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Abstract: There is an increasing awareness of the growing 
influence of organized entities involved in today’s Internet attacks. 
However, there is no easy way to discriminate between the 
observed malicious activities of script kiddies and professional 
organizations, for example. For more than two years, the 
Leurré.com project has collected data on a worldwide scale 
amenable to such analysis. Previous publications have highlighted 
the usefulness of so called attack clusters to provide some insight 
into the different tools used to attack Internet sites. In this paper, 
we introduce a new notion, namely cliques of clusters, as an 
automated knowledge discovery method. Cliques provide analysts 
with some refined information about how, and potentially by 
whom, attack tools are used. We provide some examples of the 
kind of information that they can provide. We also address the 
limitations of the approach by showing that some interesting attack 
characteristics, namely Inter Arrival Times (IATs) of packets in the 
attack flows, are only partially taken into account by this approach.

Keywords: honeypots, traffic analysis, Internet attacks, malware, 
computer forensics

Introduction
Unsolicited traffic on the Internet includes malicious traffic 
caused by a variety of malicious software such as worms [1] 
and botnets [2]. It also includes benign traffic and this may 
be due to a number of different circumstances, including for 
example software misconfiguration. This unsolicited traffic 
has been collectively referred to as background radiation by 
Pang et al in [3]. There are broadly speaking two approaches 
that have been used for studying this traffic in order to 
identify worms, the first approach using honeypots, the 
second using so-called Internet telescopes and darknets. We 
refer the interested reader to [4] for a thorough review of the 
state of the art with respect to these various approaches. 
While traffic analysis for this purpose may occur at the 
packet header level, at the payload level or both, it is noted 
that there are advantages in using traffic behavior models 
(relying exclusively or mainly upon packet header 
information) rather than code signatures (relying upon packet 
payloads). One reason for this is robustness in the face of 
obfuscation [2], another is efficiency. There has also been 
recent work on the use of DNS and ARP activity in a 
network [5,6] to identify anomalous - possibly worm –
activity. Gu et al. [7] present a summary of research into the 
measurement of worm propagation, the modeling of worm 
propagation, and techniques for early detection and warning. 

That paper also proposes local detection and response as a 
more effective way of dealing with blocking the spread of 
worms across the Internet than the global strategies proposed 
elsewhere. 
The work described in this paper builds upon previous work 
by the authors in the use of low interactivity honeypots for 
worm detection and identification using data obtained from a 
set of honeypot platforms (see [8] for details). This 
distributed honeypot environment currently consists of 40 
platforms located in 25 different countries, covering five 
continents. Previous work by two of the authors [9, 10] 
focused on a clustering technique to identify the tools behind 
the observed attacks using a clustering algorithm detailed in 
[9]. 
 The present paper focuses on the identification of cluster 
inter-relationships based on the discovery of cliques. These 
cluster inter-relationships expose additional common 
characteristics of the clusters that can be used to gain a better 
understanding of the modus operandi associated with these 
tools. To give a concrete example, one would like to know 
for instance if certain attack tools are used only  from some 
specific regions of the world and target some other specific 
regions. Similarly, one would like to know if the assumptions 
made in the context of the study of Darknets or Internet 
telescopes are valid. Indeed, the underlying assumption of 
this line of research is that it is possible to know which 
attacks occur on the Internet as a whole, by extrapolating 
knowledge obtained by monitoring a sufficiently large block 
of IP addresses. In the remainder of this paper, we show that, 
at least in several cases, this hypothesis does not hold.
The main contributions of this paper are:

1. the introduction of the notion of cliques;
2. the use of this notion in several concrete examples;
3. a case study demonstrating the usefulness of the 

approach and showing that the assumption made by 
Darknets and Internet telescopes does not always 
hold; and

4. a discussion of the limitations of the approach when 
applied to the study of Inter Arrival Times of 
packets within attack flows.

The rest of this paper is organized as follows. Section 2 
briefly presents the Leurré.com project and describes 
previous work of two of the authors with respect to the 
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Leurré.com honeypot network, and the use of clusters to 
identify attack tools. Section 3 introduces the notion of 
cliques of clusters and the distance measures employed in 
discovering cliques. Section 4 shows how this notion can be 
applied in practice by means of several examples using our 
dataset. Section 5 reviews our previous work carried out on 
the use of IATs to characterize malware and then presents 
our current results and the problems encountered when trying 
to use this metric to build cliques. Section 6 presents our 
conclusions and plans for future work. 

Leurré.com, clusters and their limitations

Leurré.com

The Leurré.com network of honeypot sensors currently 
consists of 40 platforms located in 25 different countries, 
covering five continents. Most platforms have been active 
for more than 12 months; the oldest one being active since 
January 2003. Each platform emulates three virtual 
machines, each running a different operating system: 
Windows 98, Windows NT Server and Linux RedHat 7.3. 
These operating systems are emulated as services using the 
low-interaction honeypot software honeyd [11]. The 
advantage of this approach is that by design, such honeypots 
cannot be compromised. Packet level (i.e. tcpdump) traces of 
the traffic observed at each platform are transferred daily to a 
central database server. Raw packet level information is 
enriched, while loaded in the database, with:

1. IP geographical information obtained with NetGeo, 
MaxMind or IP2location;

2. passive operating system fingerprinting obtained 
with Disco, p0f and ettercap;

3. TCP level statistics obtained with tcpstat; and
4. DNS reverse lookups results, whois queries.

More details on the database architecture can be found in 
[12]. Overall, we have observed, up to now, more than 
1,240,000 distinct IP addresses targeting our platforms. 
Those addresses originate from more than 100 different 
countries. A small number of those addresses have been 
observed twice, i.e., on two, or more, different days. Most 
connections consist of a handful of packets, due to the fact 
that we use low interactions honeypots, where services are 
only partly emulated. Attack tools are not identified on the 
basis of a single connection attempt but, instead, by looking 
at all connections attempted to a number of different hosts. 
We use the term Source to denote an IP address that has 
been observed on one or several platforms, and for which the 
inter-arrival time between two consecutive received packets 
does not exceed a predefined threshold (25 hours).
Using this database, we have shown the validity of this 
approach for forensic analysis and we have discovered 
original and interesting observations, related in [10,12]. For 
the sake of completeness, we briefly recall the clustering 
technique further below. It is based on the realistic 
assumption that the attacking tools, if they consist of purely 
automated deterministic activities, should generate the very 
same activity fingerprints (a set of parameters discussed 
below) on all targeted sensors. 

Network Influences

Some network disturbances might impact the analysis of 
malicious activities. They must be carefully taken into 
account when analyzing attack traces. At the time of writing, 
we have focused on some particular network effects, namely 
packet losses, network delays, retransmission, duplicates and 
forward reordering.
We have developed a technique relying on a particular IP 
field called the identification field, or IPID, that is normally 
used in fragment reassembly (see RFC 791 for more details). 
This field is implemented in various ways, most frequently as 
a simple incremental counter. The developed algorithm takes 
into account this property and combines it with the 
observation of TCP sequence numbers and capture time. In a 
similar way that Jaiswal et al. used it in [13], we have 
defined an out-of-sequence (OOS) packet to be a packet 
whose TCP sequence number (SN) is smaller than the 
previously observed sequence numbers in that connection. 
Thanks to this definition, duplicates as well as reordering 
and retransmission can be detected and removed from the 
trace under study, as presented on Figure 1.

Figure 1. Classification Process of Out-Of-Sequence Packets

Correcting the database is quite straightforward for 
duplicates and retransmitted packets thanks to this IPID-
based method. Unfortunately, packet losses or network 
delays are biases that cannot be easily fixed1. Henceforth we 
avoid the problem by generalizing some attributes, like the 
number of packets or the duration of the attacks with regards 
to these potential network influences. This generalization 
approach remains realistic and feasible in the scope of our 
study but its detailed presentation lies outside the scope of 
this paper. We refer the interested reader to [4] for a 
comprehensive treatment of this topic.

                                                          
1 It is important to note that packet retransmission and loss are 

different issues and might not be correlated. Some attack tools might 
implement  particular transport layers by themselves, in which case a loss 
would not be detected and would not imply a retransmission. An interesting 
summary of the ambiguities in the true semantics of observed traffic has 
been presented by Paxson in a recent talk [14]. 
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Traffic Clustering

As previously mentioned, we want to define the fingerprint 
of an attack in terms of a few parameters, in order to easily 
compare the activities observed on each sensor. We base this 
step on our own experience of traffic monitoring and on 
techniques commonly used for network monitoring. We 
identify the following list of parameters that uniquely define 
a cluster, or activity fingerprint:

1. the number of targeted virtual machines on the 
honeypot platform;

2. the sequences of targeted ports. The exact sequence 
of distinct targeted ports is extracted from the 
(re)ordered packets sent to one virtual machine;

3. the total number of packets sent by the attacking 
source to the platform;

4. the number of packets sent by the attacking source 
to each honeypot virtual machine on the platform;

5. the duration of the activity;
6. the ordering of the activities (in the case where 

several machines have been targeted, have they 
been attacked in sequence or in parallel?); and

7. the packet contents (if any) sent by the attacking 
source (TCP payloads).

We first distinguish parameters with discrete values 
(parameters 1,2,6) and others where a generalization process 
is required, as they are more impacted by network losses and 
delays (parameters 3,4,5). We refer the interested reader to 
[9] for more details on the clustering technique. 
A second step refines the initial grouping by looking at the 
packet payloads (parameter 7). A Levenshtein-based payload 
distance is used. If distances are not uniform within a cluster, 
we split this cluster into smaller and more homogeneous 
clusters. The output of our clustering engine is a set of 
clusters where a cluster is defined as follows:

Definition: A Cluster groups Sources which had a similar 
activity fingerprint (similar parameter values) on a 
Leurré.com platform.

Clustering Limitations

Most of the clusters generated using the technique above are 
found to be consistent and have helped to understand (to 
confirm and/or to discover) interesting phenomena of 
malware activities. Some results have been published in 
peer-reviewed international conferences [9,10,12].
However, experience has highlighted the following two 
weaknesses of the approach: 

1. It frequently appears that some sets of clusters share 
other original features. As an illustration, we can 
cite groups of clusters sharing Time-to-Live (TTL) 
oddities2. In other words, we observe the existence 
of similarities between clusters that cannot easily be 
rationalized. The difficulty lies in the fact that these 
similarities are discriminatory for a small portion of 
clusters but not for all and, therefore, cannot be 
used within the previously mentioned clustering 
algorithm itself. 

                                                          
2 For a single Source, we note unusual hops in the TTL values, 

associated to distinct IPID-counter sequences.

2. Some clusters are found gathering no more than 
three sources. In other words, a very small number 
of IP addresses are found sharing the same activity 
signature (according to the above mentioned 
attributes). This might be explained by a too 
restrictive clustering algorithm, or by the fact that 
these activities are definitely unusual or very 
specific. We need to distinguish these two reasons. 
On one hand, the attributes defined in the clustering 
algorithm might not be adequate and some 
clustering criteria should thus be relaxed. On the 
other hand, very rare activities are also worth being 
analyzed and understood, as they are of interest for 
both the administrators of the targeted network and 
the security community in general.

We intend in the next Sections to move one step further into 
the resolution of these two issues. Section 3 proposes a 
technique to address the first issue by identifying such 
similarities in an automated way through a graph-based 
approach. Sections 4 and 5 show practical use of this new 
approach, its benefits as well as its limitations. 

Cluster Correlation: Cliques

Introduction

It is important to note that several types of analysis could be 
applied to the clusters. We distinguish two classes:

1. Intra-Cluster Analysis: Within a cluster, the 
analysis aims at extracting features that are more 
specific to this cluster than to others, in order to 
enrich the knowledge and understanding of the 
phenomenon which has created those traces (root 
cause of the activity fingerprint).

2. Inter-Cluster Analysis: The analysis aims at finding 
relationships between clusters, and to group those 
that share common characteristics.

The first type of analysis aims at finding specific features of 
some attacks. When they are clearly identified, they can be 
used to improve and check the consistency of the cluster and 
to improve the matching of new incoming traffic. The second 
type of analysis aims at checking if the previous features, as 
well as other properties, are shared by several clusters. We 
focus in the following on the second type of analysis.
One solution to deal with information extraction from data 
sets comes from graph and matrix theory. The approach we 
propose is based on a particular subclass of graphs called 
cliques (also called complete graphs, see [15]), and 
algorithms which aim at extracting dominant sets (maximal 
weighted cliques).
This technique is applicable to matrices expressing 
similarities between clusters in a numerical fashion. A 
similarity matrix is a NxN matrix where each (i,j) element 
expresses a measure of similarity between the clusters i and j 
(currently, N≈1000 in our database). Thus, as a preliminary 
phase, one needs  to build a matrix that represents the 
similarities between any two clusters according to a given 
criterion. This can be done using the following steps:

1. identify a characteristic of the clusters to be used in 
the inter-cluster relationship analysis;
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2. define a formal representation for this characteristic 
(as a vector, for instance);

3. quantify this representation (values to be included 
in the vector);

4. define a distance metric to evaluate the similarity of 
the characteristics of two clusters (for instance, 
vector dot product); and

5. for each pair of clusters, calculate their distance 
according to this metric and insert the resulting 
value into the similarity matrix.

Let us assume that we have created such similarity matrices, 
which model edge-weighted undirected graphs, where each 
node corresponds to a cluster and the weights of the edges 
represent the (inverse of the) distances between two nodes 
(i.e., clusters). We can formalize the problem of discovering 
inter-cluster relationships as the problem of searching for 
edge-weighted maximal cliques in the graph of N nodes. 
The process is the following: we find a maximal clique in the 
graph and remove the edges of that clique from the graph; we 
repeat the process sequentially with the remaining set of 
vertices and edges, until there remains no non-trivial3

maximal clique in the graph.

Building the Matrices

Finding maximal cliques in an edge-weighted undirected 
graph is a classical graph theoretic problem. Because 
analytic searching for maximal cliques is computationally 
hard, numerous approximations to the solution have been 
proposed [16]. For our purposes, we adopt the approximate 
approach of iteratively finding dominant sets of maximally 
similar nodes in the graph (equivalent to finding maximal 
cliques) as proposed in [16]. Besides providing an efficient 
approximation to finding maximal cliques, the framework of 
dominant sets naturally provides a principled measure of the 
cohesiveness of a subclass, as well as a measure of node 
participation in its membership subclass. We now present an 
overview of dominant sets showing how they can be used for 
our purpose:
Let the data to be analyzed be represented by an undirected, 
edge-weighted graph with no self-loops G=(V,E,A) where V
is the vertex set, EVxV  is the edge set and A is the  NxN 
symmetric similarity matrix  defined as:
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The sim function is computed using any notion of similarity 
which can be relevant to compare clusters. Some examples 
are discussed in the next Section. 
To discover cliques and to quantize the cohesiveness of a 
cluster in a clique, we define the “average weighted degree” 
(awdegS) of a node in a given subset of vertices S. Let SV
be a non-empty subset of vertices and iS a vertex: 

                                                          
3 A non trivial clique is a clique which contains at least three nodes.

Moreover, for vertices which are not members of the subset, 
i.e. jS, we define S as: 

Intuitively, S(i,j) measures the similarity between clusters j 
and i, with respect to the average similarity between  i and its 
neighbors in S. Note that S can either be positive or 
negative and that {i}(i,j) = aij for all j and i belonging to V, 
with i different from j. Finally, to discover dominant sets in 
the graph, node weights are assigned to individual vertices4. 
This is done recursively as follows:
Let SV be a non-empty subset of vertices and iS. We 
denote by S’ the set S without the vertex i (ie, S’ = S - {i}). 
The weight of i w.r.t. S is defined as:
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The node weight ws(i) gives a measure of the overall 
similarity between the cluster corresponding to i and the 
other clusters of S. The total weight of S is then defined as:
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We are now ready to define the notion of dominant sets: 

Definition: A non-empty subset SV such that W(T)>0 for 
any non-empty TS, is said to be dominant if:

 ws(i)>0, for iS (Internal homogeneity)
 wsU{i}(i)<0, for iS (External inhomogeneity)

Because solving this problem might be infeasible in the 
general case, we use a continuous optimization technique 
proposed in [16] which applies replicator dynamics. In other 
words, solving the problem of extracting dominant sets can 
be translated into the one of making a particular temporal 
expression converge (for details, please refer to [16]).
Our algorithm which aims at extracting the maximal set of 
clusters that share a strong similarity (with respect to the 
previously built matrix) is then straightforward, and can be 
summarized by the following pseudo-code:

From the weighted graph G=(V,E,A) with N nodes
WHILE stopping_criterion(G) == FALSE DO

[1] Extract the dominant set 
from G based on the 
technique referred to above;

[2] Remove all edges associated 
with the dominant set in G.

END WHILE

The stopping_criterion() stops the process when the 
remaining edges have too small similarity weights or when 
the dominant set does not contain more than two nodes. It 

                                                          
4 Note that the term weight is being used to describe both the edge-

weights and the node-weights. However, they are two different quantities.
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thus prevents us from extracting meaningless dominant sets. 
Once the dominant sets are found, it suffices to compute their 
intersections with other dominant sets obtained using other 
characteristics to determine the new groups of clusters that 
share strong similarities w.r.t. all analyses.

Experimental Validation of the notion of 
Cliques

Definition of eight sample matrices

This technique has been successfully applied with eight 
different analysis matrices listed hereafter:

 A_Geo: Distribution of attacking countries; this 
distance matrix presents a comparison of countries 
where the attacking IPs are located. Cliques 
obtained using this matrix highlight clusters
presenting common distribution of attacking 
countries. For example, it leads to the following 
observation: certain tools have been seen launched 
most frequently from a very limited number of 
countries only. 

 A_Env: Distribution of targeted environments; this 
matrix presents a comparison of the environments 
targeted by the attacks. Cliques obtained using this 
matrix reveal that some platforms are attacked by 
some tools that are not observed elsewhere. Their 
existence demonstrates a limitation of the 
approaches which rely on Internet telescopes and 
darknets for extrapolation.

 A_OSs: Distribution of attacking operating systems 
among clusters. It answers the following question: 
which attack activities are launched from the same 
sets of operating systems?

 A_IPprox: Attacking Source IP Proximities. We 
compute here the distance between an attacking IP 
address and its target IP address. It leads to groups 
of clusters that, quite likely, share similar 
propagation strategies such as, for instance, a bias 
in favour of the propagation within the same class 
C, etc. 

 A_TLDs: Distribution of Top-Level Domains 
(DNS) among clusters.

 A_Hostnames: Distribution of attacking machine 
types among clusters (servers, routers, dsl home 
machines, etc).

 A_CommonIPs: Shared common IPv4 addresses 
between clusters.

 A_SAX: Temporal evolution over weeks (Time 
Series analysis) to compare the temporal trends of 
each attack process characterized by a cluster over a 
period of several days. The method is based on the 
notion of so called ‘time signature’ of the clusters, 
introduced in [17] and obtained using a recent time 
series analysis method called the Symbolic 
Aggregate approximation (SAX).

In the following, for the sake of illustration, we describe in 
more detail the building of the matrices A_Env, A_IPprox
and A_CommonIPs as well as the results obtained with our 
dataset. We then show in Section 4.5 how these individual 

results can be combined to deduce some interesting 
information from these simple traces.

Results with the “A_Env” Matrix

The A_Env matrix aims at finding correlation between 
clusters that have mostly been observed on a limited number 
of environments as opposed to the ones that have been 
observed on all platforms in a homogeneous way. Therefore, 
we compute for each cluster, for each environment, the ratio 
(in percentage) between the amount of traces due to that 
cluster on that environment over the total amount of traces 
for the same cluster observed on all platforms. The results 
are stored in C vectors of size P, where C is the total number 
of clusters and P is the number of platforms. The sum of all P 
values in each vector equals 100 by definition. For each of 
these C vectors, we apply a peak picking algorithm, which 
aims at selecting the most frequent platforms for each 
cluster. 
For each vector, all peaks that are µ times more intense than 
the average distribution are extracted and ordered in 
decreasing order5. All lists of peaks for all vectors are then 
compared by pairs. A distance of 1 between two clusters 
indicates a complete match of their ordered list of peaks, 
otherwise the distance is set to zero.
With A_Env, the dominant set extraction algorithm
generates 12 cliques. They are shown in Table 1 with the 
Number of Clusters, the Clique Coverage and the Peaks. The 
Clique Coverage value provides the ratio between the 
number of attack traces6 found in all clusters included in a 
given clique and the total number of attack traces found in 
the whole dataset. It gives a good indicator of the relative 
importance of the clique in terms of volume of attack traces. 
In the Peaks column, we provide the list of platform 
identifiers that are mostly attacked by the clusters found in 
the clique. 
As an illustration, Table 1 shows that 30 distinct fingerprints 
(or clusters) are specific to platform 20, while 28 are only 
observed on platform 6, etc. This confirms the distinctive 
nature of some attacks we had noticed manually and 
contradicts the assumption that traffic observed by an 
Internet Telescope is representative of all the Internet traffic. 
It is important to note, though, that a large number of attacks 
are still observed on most platforms. For these ones, Internet 
telescopes provide a suitable environment to study for 
example their propagation strategies.

Clique Id # Clusters Clique Coverage Peaks
ID 1 30 4.62 {20}
ID 2 28 2.39 {6}
ID 3 20 3.00 {20,8}
ID 4 18 2.39 {32}
ID 5 14 2.01 {20,25}
ID 6 26 3.88 {25}
ID 7 43 6.42 {6,31}
ID 8 10 0.97 {8,6}
ID 9 8 0.93 {6,8}

                                                          
5 We consider µ = 2 in this case, as most of the distribution are not 

uniformly distributed and they present clear peak activities. 
6  To be exact, we should use the term Large session, as defined in the 

Leurré.com jargon, instead of attack traces.
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Clique Id # Clusters Clique Coverage Peaks
ID 10 14 1.6 {23}
ID 11 12 2.28 {10}
ID 12 5 0.42 {25,20,36

}
Table 1. Cliques obtained using Matrix A_Env

Results with the “A_IPprox” Matrix

Some malware is known to favour the propagation over local 
networks, changing, for instance, some of the last IP bits of 
the compromised machines to select a new target. Code Red 
II, for instance, implements such a strategy [18]. In 1/8th of 
the time, this worm generates a random IP address not within 
any range of the already compromised IP address. In half of 
the time, it will stay within the same class A range as the 
compromised IP address and in 3/8th of the time, it will stay 
within the same class B range as the attacking IP address. 
Therefore, this worm has a particular signature in terms of IP 
distances. Clusters corresponding to Code Red activities 
should have this kind of ratio in common when looking at the 
distance between the attacker and attacked. We know that 
such behaviour should be observed for Code Red II because 
it has been carefully analysed (and modeled) by security 
researchers [18]. For the same reasons, we also know that the 
Zotob worm propagates by keeping the first 2 bytes and tries 
to connect to random IP addresses within the same B-class 
(255.255.0.0) as the compromised machine. However, 
reverse engineering worm code is a time-consuming task. 
We would like to find a way to identify systematically such 
bias in the propagation without having to rely on code 
analysis of the malware. To provide such answers, the matrix 
A_IPprox is built to determine if some clusters share strong 
similarities with respect to the distance between the attacking 
source IP address and the targeted virtual machine IP 
address.
In order to compute the distance between IP addresses, we 
use a specific function that returns the first bit position from 
which two IPv4 addresses IP1 and IP2 differ, with a Big-
Endian approach. An illustration is presented in Figure 2. 
The first bit which differs between IP1= X.X.X.X and 
IP2=Y.Y.Y.Y is at position 1, so the distance is 1. This 
operation is performed for each pair of IPs (Attacking 
Source / Targeted Virtual Machine) within a Cluster and the 
considered vector is simply the distribution of these values 
over all traces in the cluster. 
Using the A_IPprox matrix as input, the dominant set 
extraction algorithm generates 53 cliques. Of these, 21 
contain at least 30 clusters. They correspond to several 
combinations of peaks for distances of values 1, 5, 9, 17, 25 
and 31. This interesting result indicates that many activities 
observed from the distributed honeypot architecture present 

quite basic propagation features limited to the /8, /16, /24 or 
even /30 subnets of the victims. We are currently 
investigating other definitions of IP distances to provide a 
refined analysis of these shared propagation strategies.

Results with the “A_CommonIPs” Matrix 

Another interesting similarity matrix is the one that reveals 
the percentage of common IP addresses between clusters. It 
can be imagined that an address X.X.X.X first launches an 
attack A1 (for example a scan), and then comes back a few 
days later to run attack A2. The very same address will 
appear in the clusters corresponding to attack A1 and attack 
A2. Identifying the fact that these two clusters have a large 
fraction of IPs in common will help us identifying the modus 
operandi of attack A2, which will appear to be always 
preceded by attack A1.
A practical case of such a situation exists with the worms 
that take advantage of backdoors left open by other worms. 
A famous example is the Dabber worm that exploits the 
same vulnerability as the Sasser worm in order to spread. It 
uses a backdoor installed by the Sasser-FTP exploit 
application to burrow into a PC. Then, it removes Sasser, 
and installs a server on the infected machine to keep 
propagating. According to this scenario, we can expect that 
clusters associated with Sasser and Dabber may share 
common IPs. They will first be seen propagating the Sasser
worm and, then, propagating Dabber.
We have built the similarity matrix A_CommonIPs to 
provide a systematic way to answer that kind of question. Let 
A and B be two distinct sets of IP addresses. The distance is 
defined as:

BABA

BA
BAsimIP 


),(

As we can see, this is a different type of distance, based on 
the cardinality of sets as opposed to the other ones that were 
considering the distributions of some parameters within the 
clusters. The extraction of dominant sets reveals that the 
scenario mentioned at the beginning of this section has not 
been observed so far. It may be that no worm exhibiting such 
behaviour is virulent enough to appear in the limited number 
of addresses that we have at our disposal, or that the 
influence of temporary IP addresses is so prevalent that it 
hides the fact that the same machines are coming again. We 
are currently considering how to generalize this analysis by 
looking at common blocks of addresses instead of common 
IP addresses. However, it is worth noting that we still obtain 
around 50 cliques formed by numerous clusters which are of 
very small sizes (less than 5 Sources per cluster). They 
correspond to very particular activity phenomena that are, in 
almost all cases, the artefact of misconfigured management 

Figure 2. Distance between IP addresses
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servers. As an illustration, it has been found that a single HP 
Openview Server (or, more precisely, a HP Systems Insight 
Manager HPSIM) has periodically been scanning machines 
in a given network, using different layer 3 protocols and 
transport ports (UDP 161: SNMP, TCP 280: http 
management, etc). This server has been observed for five 
months during discontinuous periods of varying lengths, 
from a few hours to a few days. Since the length of a session 
as well as the number of packets are key elements of the 
definition of a cluster, this IP has been put in various clusters 
as a function of the length of its continuous activity. Later 
on, these various clusters have been brought back together by 
means of this similarity matrix.

An illustrative Case Study

The three previous sections have described three matrices 
which have been built to perform some analyses on the 
clusters. We want to show in this Section, by means of a 
short example, that the intersection of several analyses can 
also lead to interesting findings. Therefore, we focus on two 
dominant sets that have been defined in Table 1 with the 
respective identifiers 8 and 9. These cliques group together 
all clusters, 10 for clique 8 and 8 for clique 9, that have 
targeted both platforms 6 and 8. The first platform is located 
in an European industry network, while the second one runs 
in an academic network in Asia. Investigating the 
intersections of these cliques with the ones obtained by 
means of the other analyses leads to the following results:

1. all 18 clusters are also found within a single clique 
obtained by means of the A_IPprox matrix. That 
clique corresponds to the single peak {24}. In other 
words, it means that all attacking sources are 
located in the same /24 network as their targets. 
However, the targets are located in two different /24 
networks. Thus, all sources belong either to the 
same /24 as sensor 6 or in the same /24 network as 
cluster 8. This is a very striking result coming from 
the simple intersection of the cliques obtained with 
these two matrices;

2. despite the fact that the attackers come from two 
limited sets of IP addresses, all IPs found in these 
18 clusters are different. Indeed, none of these 
clusters show up in the matrix A_CommonIPs; and

3. none of these 18 clusters belongs to the cliques 
obtained using the A_SAX matrix. This means that 
the involved clusters do not share a similar temporal 
evolution. It is therefore quite likely that they 
represent different kinds of activity and are not the 
various symptoms of a single worm present in a 
given limited period of time. 

By digging into the definitions of the clusters involved, one 
can easily find that all attacks found in these clusters have 
targeted the two virtual machines emulating Windows. None 
of the attacks have targeted the Linux emulated platform. 
They all have targeted port 135 (Microsoft Remote 
Procedure Call), but in many different ways (in terms of 
duration, payload, etc). Interestingly, these attacks have not 
been observed on any other platform than these two. These 
traces cannot be interpreted as non malicious radiation 
noise, as there is no service running on port 135 of the 

virtual machines and they do not respond to multicast 
requests. There is no regular temporal pattern between the 
different attacks. It is thus not a process trying to probe the 
Windows machines in a periodic manner. It could however 
be a monitoring process distributed over different machines 
with random time intervals.
This example leads to the following conjecture. It is quite 
likely that a hostile botnet7 is running on each of the class C 
networks where sensors 6 and 8 are installed. These two 
botnets are similar in the sense that they do not launch 
attacks against the whole world but against their own /24 
only. These botnets at several occasions have run different 
types of attacks but have always focused on port 135. 
Surprisingly enough, these attacks have not been observed 
elsewhere afterwards. It is thus possible that these botnets are 
used as testbeds for malicious users in the process of 
developing a new worm against port 135. What we see on 
these networks would be the preliminary versions of the 
worm, not yet ready to be deployed on a large scale. It would 
be interesting to pursue this investigation by looking for a 
new type of cluster that would have been seen initially on 
one of these platforms and then in the rest of the world 
afterwards. This would provide one more argument in favour 
of the usage of these networks as small scale test networks 
used before launching mature and stable new worms in the 
wild.
In the next Section, we investigate another interesting 
characteristic that has proved to be useful to characterize 
attack traces, namely Inter Arrival Time of packets in attack 
flows. We show how this notion can also be used within the 
very same framework.

IATS and cliques

Introduction

In previous work [20], we have investigated the use of 
packet inter-arrival times (IATs) to analyse the Leurré.com 
dataset. In that work we were interested in the IATs between 
packets sent from one attacker to one virtual machine on a 
given platform (i.e. a so called “tiny session” in the 
Leurré.com jargon). Clearly, IATs are influenced by the 
network, mostly by the varying latency but also by random 
perturbations. However, our intuition was that they could 
also help us identifying some pattern of activities that would 
otherwise remain hidden. In [20] we show, for instance, 
some unexpected IAT values present in a large number of 
tiny sessions. In one case, machines are regularly sending 
packets every 8 hours while in another case we observe a 
very precise IAT value of 9754 seconds (i.e. 2 hours, 42 
minutes and 34 seconds) between two packets in many 
different sessions. We refer the interested reader to [20] for a 
detailed treatment of these observations. While there was no 
evidence to suggest that these IAT peaks were indicative of 
some malicious behaviour (instead appearing to be caused by 
misconfigured devices), the approach provided a useful 
technique for classifying large volumes of traffic most likely 

                                                          
7  From [19]: “[…]A botnet is a structure consisting of many 

compromised machines which can be remotely managed (in general from 
an Internet Relay Chat IRC channel) […]”.
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caused by the same software. It is worth stressing the fact 
that these results had been obtained without taking the notion 
of clusters into account at all. At this stage, we focus on the 
question whether existing IATs peaks could be used to group 
several different clusters together. If yes, it would mean that 
the propagation strategy of these tools was visible through 
the IAT peaks and common to several of them. This would 
be a very interesting input for those carrying out forensics 
analysis of these phenomena. In the following subsection, we 
show how we have created cliques of clusters based on IATs 
values and the results we have obtained.

IAT vectors, distance and matrices

In this analysis, we only consider IATs comprised between 5 
minutes (= 300 seconds) and 25 hours (= 90000 seconds), 
the maximum IAT value allowed by the session model. The 
5 minute threshold has been chosen as a way to eliminate all 
possible influences of the network perturbations. Indeed, we 
assume that only IATs longer than 5 minutes can be 
considered as characteristic of the monitored traffic; shorter 
IATs may depend on other network artefacts such as 
congestion, packet losses, transmission latencies etc. These 
require a different analysis approach which is subject to 
future work. Of course, large IATs can still be influenced by 
the network and this is something that we will need to take 
care of.

IAT Vector

As explained before, the very first step in order to generate 
cliques of clusters is to define for each of them the 
characteristic we are interested in, by means of a vector. In 
this case, the approach taken consists of keeping for each 
cluster the list of IAT values that are predominant in the 
traces of that cluster. This is achieved using a simple “peak 
picking” algorithm. We define IAT peaks as values 
corresponding to large value variations in the statistical 
distribution of IATs. On a normed scale, the 1st derivative of 
a distribution with peaks shall thus consist of near-zero 
values, with wide oscillations appearing for peak values. 
Furthermore, we keep the sole peaks that exceed a certain 
threshold, defined as a multiple of the distribution's standard 
deviation. Among other things, this enables us to discard all 
peaks that appear in sessions where only two packets have 
been observed (ie having a single IAT value).
More specifically, our “peak-picking” algorithm is made of 
the following steps, for each cluster: 

1. initially, the set P of IATs which correspond to 
peaks is void;

2. calculate D, the statistical distribution of IATs in 
the tiny_sessions of the given cluster, and its first 
derivative D'. Figure 3 shows an example of D
where the granularity of the IATs is of 5 seconds. 
This leads to a maximal value of 18000 since the 
largest possible IAT value is 90000 seconds;

3. calculate C, the convex envelope of D' represented 
in polar coordinates. C corresponds to the most 

prominent peaks in D' and thus to those in D. Figure 
4 represents C and D’ corresponding to the curve D
shown on Figure 3;

4. add C to the set of IAT peaks P and set the values 
of D' corresponding to these IATs to zero;

5. repeat steps 3 and 4 to identify more peaks;
6. filter P to retain only those peaks whose height 

exceeds a certain multiple of the standard deviation 

of D. In Figure 5, we represent with the “+” symbol 
the peaks that are automatically selected for that 
curve. 

Figure 3. Distribution of IATs (5 seconds interval)

The results of this algorithm can be influenced by several 
parameters, namely:

 the resolution used to generate the distribution D at 
step 2, denoted as r and equal to 5 seconds in the 
previous example;

 the number of rounds, i.e. the number of times steps 
3 and 4 are performed, denoted as n;

 the threshold value used at step 6, denoted as t.

Figure 4. Convex Envelope, in polar coordinates, 
of the first derivative of the curve given in Figure 3.
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Figure 5. Peaks of D are indicated by the "+" symbols

 The results discussed here after are based on the following 
values: r=5, n=4 and t=1.5. The distribution resolution of r=5 
was selected based on our previous experience [20], which 
showed that most peaks tend to appear centered around an 
IAT value +/- 2 seconds. The values used for n and t were 
chosen empirically after a series of tests.

IAT Distance

Using the process described above, we obtain a vector of 
IATs that correspond to peaks for each processed cluster. To 
evaluate similarity of clusters in terms of IAT peaks, one has 
thus to define a distance metric function for each pair of 
vectors. Various functions can be considered, ranging from a 
plain vector dot product to elaborate shape-matching 
descriptors. Defining objective criteria for a sensible distance 
function is a nontrivial problem, especially for vectors of 
variable lengths.
In the following, we use simply the percentage of the peaks 
detected in two clusters that are common to the two clusters. 
If we denote P(c) the list of IAT peaks that appear as peaks 
in the cluster c, then the distance, in terms of IATs peaks, 
between two clusters c1 and c2 is thus obtained by the 
following formula: 

d(c1,c2) = | P(c1) ∩ P(c2) |*100 / [ |P(c1)| + |P(c2)| ]

High similarity of clusters in terms of IAT peaks thus leads 
to high values of d. We note that this distance metric 
disregards the actual number of IAT occurrences, i.e., the 
heights of the peaks, and considers only the values of IATs 
which correspond to peaks.

IAT matrix

To accelerate the clique generation, we discard the clusters 
for which no IAT peak was detected by the peak-picking 
algorithm. Results show that the values of d obtained are 
generally low: mostly in the 0-33% range. Strong similarities 
indicated by high values of d (from 66% up to 100%) appear 
for pairs of clusters that correspond to very specific traffic 
such as series of ICMP packets sent at regular intervals. With 
the parameters used (i.e. n=4, r=5 and t=1,5), we obtain 54 
clusters that have at least one high similarity with another 

one. Within these 54 clusters, 35 correspond to ICMP traffic. 
With two exceptions, the IAT values that correspond to 
peaks in these clusters are various multiples of 5 minutes, 
comprised between 300 seconds (the minimum IAT 
considered) and 7200 seconds. Three clusters also include 
multiples of 5 minutes +/- 5 seconds, i.e. clusters which 
include wider peaks that spread across two columns in our 5 
second-based IAT distribution. Finally, only three of these 
35 ICMP clusters are remarkable: one ICMP cluster contains 
also TCP traffic directed to the TCP port 4280 (in addition 
to ICMP traffic) and two pure ICMP clusters feature IAT 
peaks that are not multiples of 5 minutes +/- 5 seconds 
(namely, 355, 410, 420, 445, and 390 seconds).
The application of the cliques highlighted a limitation of the 
distance vector as it had been chosen. Indeed, cliques have 
grouped together clusters that were sharing the same peaks, 
for instance the last two, but, of course, they failed in 
showing  that  most peaks were multiples of 5 minutes. More 
explicitly, if cluster C1 has for example three IATs peaks at 
20, 25 and 30 minutes while C2 has two peaks at 10 and 15 
minutes, they will never be grouped together but, intuitively, 
one might wonder if these 5 minutes interval are not worth 
being reported to the analysts. Investigating the pattern 
between IAT values is part of our ongoing work.
The observations concerning the remaining non-ICMP 
clusters can be summarised as follows:

 5 clusters correspond to traffic directed to TCP 
ports 135 and/or 445 (5 clusters) and three to TCP 
port 80. The traffic type of two clusters remain 
unidentified. All these clusters but one TCP445 
cluster have IAT peaks which are multiples of 5 
minutes . Here too, for the reasons explained above, 
they have not been grouped together by the clique 
system despite their apparent similarities; and

 8 clusters contain Windows Messenger related 
traffic (1026UDP), five of which feature numerous 
peaks (3 clusters feature only one peak each). All 
IAT peaks in these clusters correspond to various 
values spread in the 2105 – 3770 seconds range ; 
2105 seconds being the only one close to a multiple 
of 5 minutes. These clusters did not share enough 
peaks to be grouped together into any given clique. 
However, the fact that they all target the same types 
of ports leads us to believe that the existence of 
these peaks, yet different, might be of interest to the 
people who analyse these threats.

We can derive three important conclusions from these 
results. First of all, we have to acknowledge the fact that the 
cliques did not deliver the results that we were expecting 
with respect to that specific characteristic. However, and this 
is the second contribution, the manual inspection of the IAT 
matrices has highlighted groups of clusters that clearly have 
some common characteristics in terms of IATs, yet not 
formalized in an appropriate way to be used by the clique 
algorithms. We do hope though to find a better way to 
express in a near future these IATs features in a such way 
that the clusters would eventually end up in real cliques 
automatically. Finally, as a follow up to the previous remark, 
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we may have to revisit the way we do the fusion of the 
results of the various matrices. As of now, we simply rely on 
the intersection of the cliques. Previous results show that, 
sometimes, the mere existence of a high similarity between 
two clusters, without the existence per se of a clique, is 
something that is worth considering. This is something that 
we are currently investigating as well.

Conclusions
In this paper, we have introduced the notion of cliques as an 
automated way to find interesting information about 
similarities in the modus operandi of several, apparently 
unrelated, attack tools. We have proposed a generic 
framework that enables us not only to easily add as many 
different view points as possible but also to perform a 
simple, yet efficient, aggregation of the results obtained by 
means of various types of analyses. The usefulness of the 
approach has been validated experimentally and results have 
been detailed in the paper. A simple, yet illustrative, case 
study has been proposed. Last but not least, we have seen 
how to reconcile the study on the IATs within that 
framework. Here too, experimental results have shown the 
merits of the approach as well as its limits.
The results described herein are extremely promising in the 
sense that they offer an easy way for analysts to extract as 
much information as possible from traces obtained on low 
interaction honeypots which are very easy to deploy on a 
large scale. This framework, thanks to the enriched 
information found in the Leurré.com database, provides a 
semantically rich environment to interpret the data and to 
better understand the attack threats found on the Internet.
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