
Journal of Information Assurance and Security 1 (2006) 21-32

Received November 27, 2005. 1154-1010 $03.50 © Dynamic Publishers, Inc.

Internet Attack Knowledge Discovery
via Clusters and Cliques of Attack Traces

F. Pouget1, M. Dacier1, J. Zimmerman2, A. Clark2, and G. Mohay2

1Institut Eurécom BP 193
F-06904 Sophia Antipolis cedex, France

{pouget, dacier}@eurecom.fr

2Queensland University of Technology
126, Margaret Street, Brisbane 4000, QLD Australia

{j.zimmermann, a.clark, g.mohay}@qut.edu.au

Abstract: There is an increasing awareness of the growing
influence of organized entities involved in today’s Internet attacks.
However, there is no easy way to discriminate between the
observed malicious activities of script kiddies and professional
organizations, for example. For more than two years, the
Leurré.com project has collected data on a worldwide scale
amenable to such analysis. Previous publications have highlighted
the usefulness of so called attack clusters to provide some insight
into the different tools used to attack Internet sites. In this paper,
we introduce a new notion, namely cliques of clusters, as an
automated knowledge discovery method. Cliques provide analysts
with some refined information about how, and potentially by
whom, attack tools are used. We provide some examples of the
kind of information that they can provide. We also address the
limitations of the approach by showing that some interesting attack
characteristics, namely Inter Arrival Times (IATs) of packets in the
attack flows, are only partially taken into account by this approach.

Keywords: honeypots, traffic analysis, Internet attacks, malware,
computer forensics

Introduction
Unsolicited traffic on the Internet includes malicious traffic
caused by a variety of malicious software such as worms [1]
and botnets [2]. It also includes benign traffic and this may
be due to a number of different circumstances, including for
example software misconfiguration. This unsolicited traffic
has been collectively referred to as background radiation by
Pang et al in [3]. There are broadly speaking two approaches
that have been used for studying this traffic in order to
identify worms, the first approach using honeypots, the
second using so-called Internet telescopes and darknets. We
refer the interested reader to [4] for a thorough review of the
state of the art with respect to these various approaches.
While traffic analysis for this purpose may occur at the
packet header level, at the payload level or both, it is noted
that there are advantages in using traffic behavior models
(relying exclusively or mainly upon packet header
information) rather than code signatures (relying upon packet
payloads). One reason for this is robustness in the face of
obfuscation [2], another is efficiency. There has also been
recent work on the use of DNS and ARP activity in a
network [5,6] to identify anomalous - possibly worm –
activity. Gu et al. [7] present a summary of research into the
measurement of worm propagation, the modeling of worm
propagation, and techniques for early detection and warning.

That paper also proposes local detection and response as a
more effective way of dealing with blocking the spread of
worms across the Internet than the global strategies proposed
elsewhere.
The work described in this paper builds upon previous work
by the authors in the use of low interactivity honeypots for
worm detection and identification using data obtained from a
set of honeypot platforms (see [8] for details). This
distributed honeypot environment currently consists of 40
platforms located in 25 different countries, covering five
continents. Previous work by two of the authors [9, 10]
focused on a clustering technique to identify the tools behind
the observed attacks using a clustering algorithm detailed in
[9].
 The present paper focuses on the identification of cluster
inter-relationships based on the discovery of cliques. These
cluster inter-relationships expose additional common
characteristics of the clusters that can be used to gain a better
understanding of the modus operandi associated with these
tools. To give a concrete example, one would like to know
for instance if certain attack tools are used only from some
specific regions of the world and target some other specific
regions. Similarly, one would like to know if the assumptions
made in the context of the study of Darknets or Internet
telescopes are valid. Indeed, the underlying assumption of
this line of research is that it is possible to know which
attacks occur on the Internet as a whole, by extrapolating
knowledge obtained by monitoring a sufficiently large block
of IP addresses. In the remainder of this paper, we show that,
at least in several cases, this hypothesis does not hold.
The main contributions of this paper are:

1. the introduction of the notion of cliques;
2. the use of this notion in several concrete examples;
3. a case study demonstrating the usefulness of the

approach and showing that the assumption made by
Darknets and Internet telescopes does not always
hold; and

4. a discussion of the limitations of the approach when
applied to the study of Inter Arrival Times of
packets within attack flows.

The rest of this paper is organized as follows. Section 2
briefly presents the Leurré.com project and describes
previous work of two of the authors with respect to the

22 Pouget, Dacier, Zimmerman, Clark & Mohay

Leurré.com honeypot network, and the use of clusters to
identify attack tools. Section 3 introduces the notion of
cliques of clusters and the distance measures employed in
discovering cliques. Section 4 shows how this notion can be
applied in practice by means of several examples using our
dataset. Section 5 reviews our previous work carried out on
the use of IATs to characterize malware and then presents
our current results and the problems encountered when trying
to use this metric to build cliques. Section 6 presents our
conclusions and plans for future work.

Leurré.com, clusters and their limitations

Leurré.com

The Leurré.com network of honeypot sensors currently
consists of 40 platforms located in 25 different countries,
covering five continents. Most platforms have been active
for more than 12 months; the oldest one being active since
January 2003. Each platform emulates three virtual
machines, each running a different operating system:
Windows 98, Windows NT Server and Linux RedHat 7.3.
These operating systems are emulated as services using the
low-interaction honeypot software honeyd [11]. The
advantage of this approach is that by design, such honeypots
cannot be compromised. Packet level (i.e. tcpdump) traces of
the traffic observed at each platform are transferred daily to a
central database server. Raw packet level information is
enriched, while loaded in the database, with:

1. IP geographical information obtained with NetGeo,
MaxMind or IP2location;

2. passive operating system fingerprinting obtained
with Disco, p0f and ettercap;

3. TCP level statistics obtained with tcpstat; and
4. DNS reverse lookups results, whois queries.

More details on the database architecture can be found in
[12]. Overall, we have observed, up to now, more than
1,240,000 distinct IP addresses targeting our platforms.
Those addresses originate from more than 100 different
countries. A small number of those addresses have been
observed twice, i.e., on two, or more, different days. Most
connections consist of a handful of packets, due to the fact
that we use low interactions honeypots, where services are
only partly emulated. Attack tools are not identified on the
basis of a single connection attempt but, instead, by looking
at all connections attempted to a number of different hosts.
We use the term Source to denote an IP address that has
been observed on one or several platforms, and for which the
inter-arrival time between two consecutive received packets
does not exceed a predefined threshold (25 hours).
Using this database, we have shown the validity of this
approach for forensic analysis and we have discovered
original and interesting observations, related in [10,12]. For
the sake of completeness, we briefly recall the clustering
technique further below. It is based on the realistic
assumption that the attacking tools, if they consist of purely
automated deterministic activities, should generate the very
same activity fingerprints (a set of parameters discussed
below) on all targeted sensors.

Network Influences

Some network disturbances might impact the analysis of
malicious activities. They must be carefully taken into
account when analyzing attack traces. At the time of writing,
we have focused on some particular network effects, namely
packet losses, network delays, retransmission, duplicates and
forward reordering.
We have developed a technique relying on a particular IP
field called the identification field, or IPID, that is normally
used in fragment reassembly (see RFC 791 for more details).
This field is implemented in various ways, most frequently as
a simple incremental counter. The developed algorithm takes
into account this property and combines it with the
observation of TCP sequence numbers and capture time. In a
similar way that Jaiswal et al. used it in [13], we have
defined an out-of-sequence (OOS) packet to be a packet
whose TCP sequence number (SN) is smaller than the
previously observed sequence numbers in that connection.
Thanks to this definition, duplicates as well as reordering
and retransmission can be detected and removed from the
trace under study, as presented on Figure 1.

Figure 1. Classification Process of Out-Of-Sequence Packets

Correcting the database is quite straightforward for
duplicates and retransmitted packets thanks to this IPID-
based method. Unfortunately, packet losses or network
delays are biases that cannot be easily fixed1. Henceforth we
avoid the problem by generalizing some attributes, like the
number of packets or the duration of the attacks with regards
to these potential network influences. This generalization
approach remains realistic and feasible in the scope of our
study but its detailed presentation lies outside the scope of
this paper. We refer the interested reader to [4] for a
comprehensive treatment of this topic.

1 It is important to note that packet retransmission and loss are

different issues and might not be correlated. Some attack tools might
implement particular transport layers by themselves, in which case a loss
would not be detected and would not imply a retransmission. An interesting
summary of the ambiguities in the true semantics of observed traffic has
been presented by Paxson in a recent talk [14].

Internet Attack Knowledge Discovery via Clusters and Cliques of Attack Traces 23

Traffic Clustering

As previously mentioned, we want to define the fingerprint
of an attack in terms of a few parameters, in order to easily
compare the activities observed on each sensor. We base this
step on our own experience of traffic monitoring and on
techniques commonly used for network monitoring. We
identify the following list of parameters that uniquely define
a cluster, or activity fingerprint:

1. the number of targeted virtual machines on the
honeypot platform;

2. the sequences of targeted ports. The exact sequence
of distinct targeted ports is extracted from the
(re)ordered packets sent to one virtual machine;

3. the total number of packets sent by the attacking
source to the platform;

4. the number of packets sent by the attacking source
to each honeypot virtual machine on the platform;

5. the duration of the activity;
6. the ordering of the activities (in the case where

several machines have been targeted, have they
been attacked in sequence or in parallel?); and

7. the packet contents (if any) sent by the attacking
source (TCP payloads).

We first distinguish parameters with discrete values
(parameters 1,2,6) and others where a generalization process
is required, as they are more impacted by network losses and
delays (parameters 3,4,5). We refer the interested reader to
[9] for more details on the clustering technique.
A second step refines the initial grouping by looking at the
packet payloads (parameter 7). A Levenshtein-based payload
distance is used. If distances are not uniform within a cluster,
we split this cluster into smaller and more homogeneous
clusters. The output of our clustering engine is a set of
clusters where a cluster is defined as follows:

Definition: A Cluster groups Sources which had a similar
activity fingerprint (similar parameter values) on a
Leurré.com platform.

Clustering Limitations

Most of the clusters generated using the technique above are
found to be consistent and have helped to understand (to
confirm and/or to discover) interesting phenomena of
malware activities. Some results have been published in
peer-reviewed international conferences [9,10,12].
However, experience has highlighted the following two
weaknesses of the approach:

1. It frequently appears that some sets of clusters share
other original features. As an illustration, we can
cite groups of clusters sharing Time-to-Live (TTL)
oddities2. In other words, we observe the existence
of similarities between clusters that cannot easily be
rationalized. The difficulty lies in the fact that these
similarities are discriminatory for a small portion of
clusters but not for all and, therefore, cannot be
used within the previously mentioned clustering
algorithm itself.

2 For a single Source, we note unusual hops in the TTL values,

associated to distinct IPID-counter sequences.

2. Some clusters are found gathering no more than
three sources. In other words, a very small number
of IP addresses are found sharing the same activity
signature (according to the above mentioned
attributes). This might be explained by a too
restrictive clustering algorithm, or by the fact that
these activities are definitely unusual or very
specific. We need to distinguish these two reasons.
On one hand, the attributes defined in the clustering
algorithm might not be adequate and some
clustering criteria should thus be relaxed. On the
other hand, very rare activities are also worth being
analyzed and understood, as they are of interest for
both the administrators of the targeted network and
the security community in general.

We intend in the next Sections to move one step further into
the resolution of these two issues. Section 3 proposes a
technique to address the first issue by identifying such
similarities in an automated way through a graph-based
approach. Sections 4 and 5 show practical use of this new
approach, its benefits as well as its limitations.

Cluster Correlation: Cliques

Introduction

It is important to note that several types of analysis could be
applied to the clusters. We distinguish two classes:

1. Intra-Cluster Analysis: Within a cluster, the
analysis aims at extracting features that are more
specific to this cluster than to others, in order to
enrich the knowledge and understanding of the
phenomenon which has created those traces (root
cause of the activity fingerprint).

2. Inter-Cluster Analysis: The analysis aims at finding
relationships between clusters, and to group those
that share common characteristics.

The first type of analysis aims at finding specific features of
some attacks. When they are clearly identified, they can be
used to improve and check the consistency of the cluster and
to improve the matching of new incoming traffic. The second
type of analysis aims at checking if the previous features, as
well as other properties, are shared by several clusters. We
focus in the following on the second type of analysis.
One solution to deal with information extraction from data
sets comes from graph and matrix theory. The approach we
propose is based on a particular subclass of graphs called
cliques (also called complete graphs, see [15]), and
algorithms which aim at extracting dominant sets (maximal
weighted cliques).
This technique is applicable to matrices expressing
similarities between clusters in a numerical fashion. A
similarity matrix is a NxN matrix where each (i,j) element
expresses a measure of similarity between the clusters i and j
(currently, N≈1000 in our database). Thus, as a preliminary
phase, one needs to build a matrix that represents the
similarities between any two clusters according to a given
criterion. This can be done using the following steps:

1. identify a characteristic of the clusters to be used in
the inter-cluster relationship analysis;

24 Pouget, Dacier, Zimmerman, Clark & Mohay

2. define a formal representation for this characteristic
(as a vector, for instance);

3. quantify this representation (values to be included
in the vector);

4. define a distance metric to evaluate the similarity of
the characteristics of two clusters (for instance,
vector dot product); and

5. for each pair of clusters, calculate their distance
according to this metric and insert the resulting
value into the similarity matrix.

Let us assume that we have created such similarity matrices,
which model edge-weighted undirected graphs, where each
node corresponds to a cluster and the weights of the edges
represent the (inverse of the) distances between two nodes
(i.e., clusters). We can formalize the problem of discovering
inter-cluster relationships as the problem of searching for
edge-weighted maximal cliques in the graph of N nodes.
The process is the following: we find a maximal clique in the
graph and remove the edges of that clique from the graph; we
repeat the process sequentially with the remaining set of
vertices and edges, until there remains no non-trivial3

maximal clique in the graph.

Building the Matrices

Finding maximal cliques in an edge-weighted undirected
graph is a classical graph theoretic problem. Because
analytic searching for maximal cliques is computationally
hard, numerous approximations to the solution have been
proposed [16]. For our purposes, we adopt the approximate
approach of iteratively finding dominant sets of maximally
similar nodes in the graph (equivalent to finding maximal
cliques) as proposed in [16]. Besides providing an efficient
approximation to finding maximal cliques, the framework of
dominant sets naturally provides a principled measure of the
cohesiveness of a subclass, as well as a measure of node
participation in its membership subclass. We now present an
overview of dominant sets showing how they can be used for
our purpose:
Let the data to be analyzed be represented by an undirected,
edge-weighted graph with no self-loops G=(V,E,A) where V
is the vertex set, EVxV is the edge set and A is the NxN
symmetric similarity matrix defined as:

otherwise

Ejijisim
aij 0

),(),(

The sim function is computed using any notion of similarity
which can be relevant to compare clusters. Some examples
are discussed in the next Section.
To discover cliques and to quantize the cohesiveness of a
cluster in a clique, we define the “average weighted degree”
(awdegS) of a node in a given subset of vertices S. Let SV
be a non-empty subset of vertices and iS a vertex:

3 A non trivial clique is a clique which contains at least three nodes.

Moreover, for vertices which are not members of the subset,
i.e. jS, we define S as:

Intuitively, S(i,j) measures the similarity between clusters j
and i, with respect to the average similarity between i and its
neighbors in S. Note that S can either be positive or
negative and that {i}(i,j) = aij for all j and i belonging to V,
with i different from j. Finally, to discover dominant sets in
the graph, node weights are assigned to individual vertices4.
This is done recursively as follows:
Let SV be a non-empty subset of vertices and iS. We
denote by S’ the set S without the vertex i (ie, S’ = S - {i}).
The weight of i w.r.t. S is defined as:

 '

'')(),(

11
)(

Sj
SS

S otherwisejwij

Sif
iw

The node weight ws(i) gives a measure of the overall
similarity between the cluster corresponding to i and the
other clusters of S. The total weight of S is then defined as:

Si

S iwSw)()(

We are now ready to define the notion of dominant sets:

Definition: A non-empty subset SV such that W(T)>0 for
any non-empty TS, is said to be dominant if:

 ws(i)>0, for iS (Internal homogeneity)
 wsU{i}(i)<0, for iS (External inhomogeneity)

Because solving this problem might be infeasible in the
general case, we use a continuous optimization technique
proposed in [16] which applies replicator dynamics. In other
words, solving the problem of extracting dominant sets can
be translated into the one of making a particular temporal
expression converge (for details, please refer to [16]).
Our algorithm which aims at extracting the maximal set of
clusters that share a strong similarity (with respect to the
previously built matrix) is then straightforward, and can be
summarized by the following pseudo-code:

From the weighted graph G=(V,E,A) with N nodes
WHILE stopping_criterion(G) == FALSE DO

[1] Extract the dominant set
from G based on the
technique referred to above;

[2] Remove all edges associated
with the dominant set in G.

END WHILE

The stopping_criterion() stops the process when the
remaining edges have too small similarity weights or when
the dominant set does not contain more than two nodes. It

4 Note that the term weight is being used to describe both the edge-

weights and the node-weights. However, they are two different quantities.

Sj

ijS a
S

iaw
1

)(deg

)(deg),(iawaji SijS

Internet Attack Knowledge Discovery via Clusters and Cliques of Attack Traces 25

thus prevents us from extracting meaningless dominant sets.
Once the dominant sets are found, it suffices to compute their
intersections with other dominant sets obtained using other
characteristics to determine the new groups of clusters that
share strong similarities w.r.t. all analyses.

Experimental Validation of the notion of
Cliques

Definition of eight sample matrices

This technique has been successfully applied with eight
different analysis matrices listed hereafter:

 A_Geo: Distribution of attacking countries; this
distance matrix presents a comparison of countries
where the attacking IPs are located. Cliques
obtained using this matrix highlight clusters
presenting common distribution of attacking
countries. For example, it leads to the following
observation: certain tools have been seen launched
most frequently from a very limited number of
countries only.

 A_Env: Distribution of targeted environments; this
matrix presents a comparison of the environments
targeted by the attacks. Cliques obtained using this
matrix reveal that some platforms are attacked by
some tools that are not observed elsewhere. Their
existence demonstrates a limitation of the
approaches which rely on Internet telescopes and
darknets for extrapolation.

 A_OSs: Distribution of attacking operating systems
among clusters. It answers the following question:
which attack activities are launched from the same
sets of operating systems?

 A_IPprox: Attacking Source IP Proximities. We
compute here the distance between an attacking IP
address and its target IP address. It leads to groups
of clusters that, quite likely, share similar
propagation strategies such as, for instance, a bias
in favour of the propagation within the same class
C, etc.

 A_TLDs: Distribution of Top-Level Domains
(DNS) among clusters.

 A_Hostnames: Distribution of attacking machine
types among clusters (servers, routers, dsl home
machines, etc).

 A_CommonIPs: Shared common IPv4 addresses
between clusters.

 A_SAX: Temporal evolution over weeks (Time
Series analysis) to compare the temporal trends of
each attack process characterized by a cluster over a
period of several days. The method is based on the
notion of so called ‘time signature’ of the clusters,
introduced in [17] and obtained using a recent time
series analysis method called the Symbolic
Aggregate approximation (SAX).

In the following, for the sake of illustration, we describe in
more detail the building of the matrices A_Env, A_IPprox
and A_CommonIPs as well as the results obtained with our
dataset. We then show in Section 4.5 how these individual

results can be combined to deduce some interesting
information from these simple traces.

Results with the “A_Env” Matrix

The A_Env matrix aims at finding correlation between
clusters that have mostly been observed on a limited number
of environments as opposed to the ones that have been
observed on all platforms in a homogeneous way. Therefore,
we compute for each cluster, for each environment, the ratio
(in percentage) between the amount of traces due to that
cluster on that environment over the total amount of traces
for the same cluster observed on all platforms. The results
are stored in C vectors of size P, where C is the total number
of clusters and P is the number of platforms. The sum of all P
values in each vector equals 100 by definition. For each of
these C vectors, we apply a peak picking algorithm, which
aims at selecting the most frequent platforms for each
cluster.
For each vector, all peaks that are µ times more intense than
the average distribution are extracted and ordered in
decreasing order5. All lists of peaks for all vectors are then
compared by pairs. A distance of 1 between two clusters
indicates a complete match of their ordered list of peaks,
otherwise the distance is set to zero.
With A_Env, the dominant set extraction algorithm
generates 12 cliques. They are shown in Table 1 with the
Number of Clusters, the Clique Coverage and the Peaks. The
Clique Coverage value provides the ratio between the
number of attack traces6 found in all clusters included in a
given clique and the total number of attack traces found in
the whole dataset. It gives a good indicator of the relative
importance of the clique in terms of volume of attack traces.
In the Peaks column, we provide the list of platform
identifiers that are mostly attacked by the clusters found in
the clique.
As an illustration, Table 1 shows that 30 distinct fingerprints
(or clusters) are specific to platform 20, while 28 are only
observed on platform 6, etc. This confirms the distinctive
nature of some attacks we had noticed manually and
contradicts the assumption that traffic observed by an
Internet Telescope is representative of all the Internet traffic.
It is important to note, though, that a large number of attacks
are still observed on most platforms. For these ones, Internet
telescopes provide a suitable environment to study for
example their propagation strategies.

Clique Id # Clusters Clique Coverage Peaks
ID 1 30 4.62 {20}
ID 2 28 2.39 {6}
ID 3 20 3.00 {20,8}
ID 4 18 2.39 {32}
ID 5 14 2.01 {20,25}
ID 6 26 3.88 {25}
ID 7 43 6.42 {6,31}
ID 8 10 0.97 {8,6}
ID 9 8 0.93 {6,8}

5 We consider µ = 2 in this case, as most of the distribution are not

uniformly distributed and they present clear peak activities.
6 To be exact, we should use the term Large session, as defined in the

Leurré.com jargon, instead of attack traces.

26 Pouget, Dacier, Zimmerman, Clark & Mohay

Clique Id # Clusters Clique Coverage Peaks
ID 10 14 1.6 {23}
ID 11 12 2.28 {10}
ID 12 5 0.42 {25,20,36

}
Table 1. Cliques obtained using Matrix A_Env

Results with the “A_IPprox” Matrix

Some malware is known to favour the propagation over local
networks, changing, for instance, some of the last IP bits of
the compromised machines to select a new target. Code Red
II, for instance, implements such a strategy [18]. In 1/8th of
the time, this worm generates a random IP address not within
any range of the already compromised IP address. In half of
the time, it will stay within the same class A range as the
compromised IP address and in 3/8th of the time, it will stay
within the same class B range as the attacking IP address.
Therefore, this worm has a particular signature in terms of IP
distances. Clusters corresponding to Code Red activities
should have this kind of ratio in common when looking at the
distance between the attacker and attacked. We know that
such behaviour should be observed for Code Red II because
it has been carefully analysed (and modeled) by security
researchers [18]. For the same reasons, we also know that the
Zotob worm propagates by keeping the first 2 bytes and tries
to connect to random IP addresses within the same B-class
(255.255.0.0) as the compromised machine. However,
reverse engineering worm code is a time-consuming task.
We would like to find a way to identify systematically such
bias in the propagation without having to rely on code
analysis of the malware. To provide such answers, the matrix
A_IPprox is built to determine if some clusters share strong
similarities with respect to the distance between the attacking
source IP address and the targeted virtual machine IP
address.
In order to compute the distance between IP addresses, we
use a specific function that returns the first bit position from
which two IPv4 addresses IP1 and IP2 differ, with a Big-
Endian approach. An illustration is presented in Figure 2.
The first bit which differs between IP1= X.X.X.X and
IP2=Y.Y.Y.Y is at position 1, so the distance is 1. This
operation is performed for each pair of IPs (Attacking
Source / Targeted Virtual Machine) within a Cluster and the
considered vector is simply the distribution of these values
over all traces in the cluster.
Using the A_IPprox matrix as input, the dominant set
extraction algorithm generates 53 cliques. Of these, 21
contain at least 30 clusters. They correspond to several
combinations of peaks for distances of values 1, 5, 9, 17, 25
and 31. This interesting result indicates that many activities
observed from the distributed honeypot architecture present

quite basic propagation features limited to the /8, /16, /24 or
even /30 subnets of the victims. We are currently
investigating other definitions of IP distances to provide a
refined analysis of these shared propagation strategies.

Results with the “A_CommonIPs” Matrix

Another interesting similarity matrix is the one that reveals
the percentage of common IP addresses between clusters. It
can be imagined that an address X.X.X.X first launches an
attack A1 (for example a scan), and then comes back a few
days later to run attack A2. The very same address will
appear in the clusters corresponding to attack A1 and attack
A2. Identifying the fact that these two clusters have a large
fraction of IPs in common will help us identifying the modus
operandi of attack A2, which will appear to be always
preceded by attack A1.
A practical case of such a situation exists with the worms
that take advantage of backdoors left open by other worms.
A famous example is the Dabber worm that exploits the
same vulnerability as the Sasser worm in order to spread. It
uses a backdoor installed by the Sasser-FTP exploit
application to burrow into a PC. Then, it removes Sasser,
and installs a server on the infected machine to keep
propagating. According to this scenario, we can expect that
clusters associated with Sasser and Dabber may share
common IPs. They will first be seen propagating the Sasser
worm and, then, propagating Dabber.
We have built the similarity matrix A_CommonIPs to
provide a systematic way to answer that kind of question. Let
A and B be two distinct sets of IP addresses. The distance is
defined as:

BABA

BA
BAsimIP

),(

As we can see, this is a different type of distance, based on
the cardinality of sets as opposed to the other ones that were
considering the distributions of some parameters within the
clusters. The extraction of dominant sets reveals that the
scenario mentioned at the beginning of this section has not
been observed so far. It may be that no worm exhibiting such
behaviour is virulent enough to appear in the limited number
of addresses that we have at our disposal, or that the
influence of temporary IP addresses is so prevalent that it
hides the fact that the same machines are coming again. We
are currently considering how to generalize this analysis by
looking at common blocks of addresses instead of common
IP addresses. However, it is worth noting that we still obtain
around 50 cliques formed by numerous clusters which are of
very small sizes (less than 5 Sources per cluster). They
correspond to very particular activity phenomena that are, in
almost all cases, the artefact of misconfigured management

Figure 2. Distance between IP addresses

Internet Attack Knowledge Discovery via Clusters and Cliques of Attack Traces 27

servers. As an illustration, it has been found that a single HP
Openview Server (or, more precisely, a HP Systems Insight
Manager HPSIM) has periodically been scanning machines
in a given network, using different layer 3 protocols and
transport ports (UDP 161: SNMP, TCP 280: http
management, etc). This server has been observed for five
months during discontinuous periods of varying lengths,
from a few hours to a few days. Since the length of a session
as well as the number of packets are key elements of the
definition of a cluster, this IP has been put in various clusters
as a function of the length of its continuous activity. Later
on, these various clusters have been brought back together by
means of this similarity matrix.

An illustrative Case Study

The three previous sections have described three matrices
which have been built to perform some analyses on the
clusters. We want to show in this Section, by means of a
short example, that the intersection of several analyses can
also lead to interesting findings. Therefore, we focus on two
dominant sets that have been defined in Table 1 with the
respective identifiers 8 and 9. These cliques group together
all clusters, 10 for clique 8 and 8 for clique 9, that have
targeted both platforms 6 and 8. The first platform is located
in an European industry network, while the second one runs
in an academic network in Asia. Investigating the
intersections of these cliques with the ones obtained by
means of the other analyses leads to the following results:

1. all 18 clusters are also found within a single clique
obtained by means of the A_IPprox matrix. That
clique corresponds to the single peak {24}. In other
words, it means that all attacking sources are
located in the same /24 network as their targets.
However, the targets are located in two different /24
networks. Thus, all sources belong either to the
same /24 as sensor 6 or in the same /24 network as
cluster 8. This is a very striking result coming from
the simple intersection of the cliques obtained with
these two matrices;

2. despite the fact that the attackers come from two
limited sets of IP addresses, all IPs found in these
18 clusters are different. Indeed, none of these
clusters show up in the matrix A_CommonIPs; and

3. none of these 18 clusters belongs to the cliques
obtained using the A_SAX matrix. This means that
the involved clusters do not share a similar temporal
evolution. It is therefore quite likely that they
represent different kinds of activity and are not the
various symptoms of a single worm present in a
given limited period of time.

By digging into the definitions of the clusters involved, one
can easily find that all attacks found in these clusters have
targeted the two virtual machines emulating Windows. None
of the attacks have targeted the Linux emulated platform.
They all have targeted port 135 (Microsoft Remote
Procedure Call), but in many different ways (in terms of
duration, payload, etc). Interestingly, these attacks have not
been observed on any other platform than these two. These
traces cannot be interpreted as non malicious radiation
noise, as there is no service running on port 135 of the

virtual machines and they do not respond to multicast
requests. There is no regular temporal pattern between the
different attacks. It is thus not a process trying to probe the
Windows machines in a periodic manner. It could however
be a monitoring process distributed over different machines
with random time intervals.
This example leads to the following conjecture. It is quite
likely that a hostile botnet7 is running on each of the class C
networks where sensors 6 and 8 are installed. These two
botnets are similar in the sense that they do not launch
attacks against the whole world but against their own /24
only. These botnets at several occasions have run different
types of attacks but have always focused on port 135.
Surprisingly enough, these attacks have not been observed
elsewhere afterwards. It is thus possible that these botnets are
used as testbeds for malicious users in the process of
developing a new worm against port 135. What we see on
these networks would be the preliminary versions of the
worm, not yet ready to be deployed on a large scale. It would
be interesting to pursue this investigation by looking for a
new type of cluster that would have been seen initially on
one of these platforms and then in the rest of the world
afterwards. This would provide one more argument in favour
of the usage of these networks as small scale test networks
used before launching mature and stable new worms in the
wild.
In the next Section, we investigate another interesting
characteristic that has proved to be useful to characterize
attack traces, namely Inter Arrival Time of packets in attack
flows. We show how this notion can also be used within the
very same framework.

IATS and cliques

Introduction

In previous work [20], we have investigated the use of
packet inter-arrival times (IATs) to analyse the Leurré.com
dataset. In that work we were interested in the IATs between
packets sent from one attacker to one virtual machine on a
given platform (i.e. a so called “tiny session” in the
Leurré.com jargon). Clearly, IATs are influenced by the
network, mostly by the varying latency but also by random
perturbations. However, our intuition was that they could
also help us identifying some pattern of activities that would
otherwise remain hidden. In [20] we show, for instance,
some unexpected IAT values present in a large number of
tiny sessions. In one case, machines are regularly sending
packets every 8 hours while in another case we observe a
very precise IAT value of 9754 seconds (i.e. 2 hours, 42
minutes and 34 seconds) between two packets in many
different sessions. We refer the interested reader to [20] for a
detailed treatment of these observations. While there was no
evidence to suggest that these IAT peaks were indicative of
some malicious behaviour (instead appearing to be caused by
misconfigured devices), the approach provided a useful
technique for classifying large volumes of traffic most likely

7 From [19]: “[…]A botnet is a structure consisting of many

compromised machines which can be remotely managed (in general from
an Internet Relay Chat IRC channel) […]”.

28 Pouget, Dacier, Zimmerman, Clark & Mohay

caused by the same software. It is worth stressing the fact
that these results had been obtained without taking the notion
of clusters into account at all. At this stage, we focus on the
question whether existing IATs peaks could be used to group
several different clusters together. If yes, it would mean that
the propagation strategy of these tools was visible through
the IAT peaks and common to several of them. This would
be a very interesting input for those carrying out forensics
analysis of these phenomena. In the following subsection, we
show how we have created cliques of clusters based on IATs
values and the results we have obtained.

IAT vectors, distance and matrices

In this analysis, we only consider IATs comprised between 5
minutes (= 300 seconds) and 25 hours (= 90000 seconds),
the maximum IAT value allowed by the session model. The
5 minute threshold has been chosen as a way to eliminate all
possible influences of the network perturbations. Indeed, we
assume that only IATs longer than 5 minutes can be
considered as characteristic of the monitored traffic; shorter
IATs may depend on other network artefacts such as
congestion, packet losses, transmission latencies etc. These
require a different analysis approach which is subject to
future work. Of course, large IATs can still be influenced by
the network and this is something that we will need to take
care of.

IAT Vector

As explained before, the very first step in order to generate
cliques of clusters is to define for each of them the
characteristic we are interested in, by means of a vector. In
this case, the approach taken consists of keeping for each
cluster the list of IAT values that are predominant in the
traces of that cluster. This is achieved using a simple “peak
picking” algorithm. We define IAT peaks as values
corresponding to large value variations in the statistical
distribution of IATs. On a normed scale, the 1st derivative of
a distribution with peaks shall thus consist of near-zero
values, with wide oscillations appearing for peak values.
Furthermore, we keep the sole peaks that exceed a certain
threshold, defined as a multiple of the distribution's standard
deviation. Among other things, this enables us to discard all
peaks that appear in sessions where only two packets have
been observed (ie having a single IAT value).
More specifically, our “peak-picking” algorithm is made of
the following steps, for each cluster:

1. initially, the set P of IATs which correspond to
peaks is void;

2. calculate D, the statistical distribution of IATs in
the tiny_sessions of the given cluster, and its first
derivative D'. Figure 3 shows an example of D
where the granularity of the IATs is of 5 seconds.
This leads to a maximal value of 18000 since the
largest possible IAT value is 90000 seconds;

3. calculate C, the convex envelope of D' represented
in polar coordinates. C corresponds to the most

prominent peaks in D' and thus to those in D. Figure
4 represents C and D’ corresponding to the curve D
shown on Figure 3;

4. add C to the set of IAT peaks P and set the values
of D' corresponding to these IATs to zero;

5. repeat steps 3 and 4 to identify more peaks;
6. filter P to retain only those peaks whose height

exceeds a certain multiple of the standard deviation

of D. In Figure 5, we represent with the “+” symbol
the peaks that are automatically selected for that
curve.

Figure 3. Distribution of IATs (5 seconds interval)

The results of this algorithm can be influenced by several
parameters, namely:

 the resolution used to generate the distribution D at
step 2, denoted as r and equal to 5 seconds in the
previous example;

 the number of rounds, i.e. the number of times steps
3 and 4 are performed, denoted as n;

 the threshold value used at step 6, denoted as t.

Figure 4. Convex Envelope, in polar coordinates,
of the first derivative of the curve given in Figure 3.

Internet Attack Knowledge Discovery via Clusters and Cliques of Attack Traces 29

Figure 5. Peaks of D are indicated by the "+" symbols

 The results discussed here after are based on the following
values: r=5, n=4 and t=1.5. The distribution resolution of r=5
was selected based on our previous experience [20], which
showed that most peaks tend to appear centered around an
IAT value +/- 2 seconds. The values used for n and t were
chosen empirically after a series of tests.

IAT Distance

Using the process described above, we obtain a vector of
IATs that correspond to peaks for each processed cluster. To
evaluate similarity of clusters in terms of IAT peaks, one has
thus to define a distance metric function for each pair of
vectors. Various functions can be considered, ranging from a
plain vector dot product to elaborate shape-matching
descriptors. Defining objective criteria for a sensible distance
function is a nontrivial problem, especially for vectors of
variable lengths.
In the following, we use simply the percentage of the peaks
detected in two clusters that are common to the two clusters.
If we denote P(c) the list of IAT peaks that appear as peaks
in the cluster c, then the distance, in terms of IATs peaks,
between two clusters c1 and c2 is thus obtained by the
following formula:

d(c1,c2) = | P(c1) ∩ P(c2) |*100 / [|P(c1)| + |P(c2)|]

High similarity of clusters in terms of IAT peaks thus leads
to high values of d. We note that this distance metric
disregards the actual number of IAT occurrences, i.e., the
heights of the peaks, and considers only the values of IATs
which correspond to peaks.

IAT matrix

To accelerate the clique generation, we discard the clusters
for which no IAT peak was detected by the peak-picking
algorithm. Results show that the values of d obtained are
generally low: mostly in the 0-33% range. Strong similarities
indicated by high values of d (from 66% up to 100%) appear
for pairs of clusters that correspond to very specific traffic
such as series of ICMP packets sent at regular intervals. With
the parameters used (i.e. n=4, r=5 and t=1,5), we obtain 54
clusters that have at least one high similarity with another

one. Within these 54 clusters, 35 correspond to ICMP traffic.
With two exceptions, the IAT values that correspond to
peaks in these clusters are various multiples of 5 minutes,
comprised between 300 seconds (the minimum IAT
considered) and 7200 seconds. Three clusters also include
multiples of 5 minutes +/- 5 seconds, i.e. clusters which
include wider peaks that spread across two columns in our 5
second-based IAT distribution. Finally, only three of these
35 ICMP clusters are remarkable: one ICMP cluster contains
also TCP traffic directed to the TCP port 4280 (in addition
to ICMP traffic) and two pure ICMP clusters feature IAT
peaks that are not multiples of 5 minutes +/- 5 seconds
(namely, 355, 410, 420, 445, and 390 seconds).
The application of the cliques highlighted a limitation of the
distance vector as it had been chosen. Indeed, cliques have
grouped together clusters that were sharing the same peaks,
for instance the last two, but, of course, they failed in
showing that most peaks were multiples of 5 minutes. More
explicitly, if cluster C1 has for example three IATs peaks at
20, 25 and 30 minutes while C2 has two peaks at 10 and 15
minutes, they will never be grouped together but, intuitively,
one might wonder if these 5 minutes interval are not worth
being reported to the analysts. Investigating the pattern
between IAT values is part of our ongoing work.
The observations concerning the remaining non-ICMP
clusters can be summarised as follows:

 5 clusters correspond to traffic directed to TCP
ports 135 and/or 445 (5 clusters) and three to TCP
port 80. The traffic type of two clusters remain
unidentified. All these clusters but one TCP445
cluster have IAT peaks which are multiples of 5
minutes . Here too, for the reasons explained above,
they have not been grouped together by the clique
system despite their apparent similarities; and

 8 clusters contain Windows Messenger related
traffic (1026UDP), five of which feature numerous
peaks (3 clusters feature only one peak each). All
IAT peaks in these clusters correspond to various
values spread in the 2105 – 3770 seconds range ;
2105 seconds being the only one close to a multiple
of 5 minutes. These clusters did not share enough
peaks to be grouped together into any given clique.
However, the fact that they all target the same types
of ports leads us to believe that the existence of
these peaks, yet different, might be of interest to the
people who analyse these threats.

We can derive three important conclusions from these
results. First of all, we have to acknowledge the fact that the
cliques did not deliver the results that we were expecting
with respect to that specific characteristic. However, and this
is the second contribution, the manual inspection of the IAT
matrices has highlighted groups of clusters that clearly have
some common characteristics in terms of IATs, yet not
formalized in an appropriate way to be used by the clique
algorithms. We do hope though to find a better way to
express in a near future these IATs features in a such way
that the clusters would eventually end up in real cliques
automatically. Finally, as a follow up to the previous remark,

30 Pouget, Dacier, Zimmerman, Clark & Mohay

we may have to revisit the way we do the fusion of the
results of the various matrices. As of now, we simply rely on
the intersection of the cliques. Previous results show that,
sometimes, the mere existence of a high similarity between
two clusters, without the existence per se of a clique, is
something that is worth considering. This is something that
we are currently investigating as well.

Conclusions
In this paper, we have introduced the notion of cliques as an
automated way to find interesting information about
similarities in the modus operandi of several, apparently
unrelated, attack tools. We have proposed a generic
framework that enables us not only to easily add as many
different view points as possible but also to perform a
simple, yet efficient, aggregation of the results obtained by
means of various types of analyses. The usefulness of the
approach has been validated experimentally and results have
been detailed in the paper. A simple, yet illustrative, case
study has been proposed. Last but not least, we have seen
how to reconcile the study on the IATs within that
framework. Here too, experimental results have shown the
merits of the approach as well as its limits.
The results described herein are extremely promising in the
sense that they offer an easy way for analysts to extract as
much information as possible from traces obtained on low
interaction honeypots which are very easy to deploy on a
large scale. This framework, thanks to the enriched
information found in the Leurré.com database, provides a
semantically rich environment to interpret the data and to
better understand the attack threats found on the Internet.

Acknowledgments

The above work was supported in part by a joint French-
Australian Science and Technology (FAST) Programme
grant and an ARC International Linkage Postdoctoral
Fellowship grant.

References

[1] J. Nazario, “Defense and Detection Strategies
against Internet Worms”. Artech House, 2004.

[2] D. Geer, "Malicious Bots Threaten Network
Security," Computer, vol. 38, pp. 18-20, 2005.

[3] R. Pang, V. Yegneswaran, P. Barford, V. Paxson,
L. Peterson, "Characteristics of internet background
radiation," in Proceedings of 4th ACM SIGCOMM
conference on Internet measurement, Taormina,
Sicily, Italy, 2004.

[4] F. Pouget, Distributed system of Honeypot Sensors:
Discrimination and Correlative Analysis of Attack
Processes, PhD Thesis from the Ecole Nationale
Supérieure des Télécommunications, January 23,
2005, available through the Eurécom Institute
library (www.eurecom.fr).

[5] D. Whyte, E. Kranakis, P.C. van Oorschot, "DNS-
based Detection of Scanning Worms in an
Enterprise Network" In Proceedings of Network
and Distributed System Security Symposium
(NDSS'05). San Diego, 2005.

[6] D. Whyte, P.C. van Oorschot, E. Kranakis,
“Detecting Intra-enterprise Scanning Worms Based
on Address Resolution” In Proceedings of the
ACSAC 2005.

[7] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, G.
Riley, "Worm Detection, Early Warning and
Response Based on Local Victim Information,"
presented at 20th Annual Computer Security
Applications Conference (ACSAC 2004), Tucson,
Arizona, 2004.

[8] The Leurré.com home page, in
http://www.leurrecom.org.

[9] F. Pouget, M. Dacier, "Honeypot-based forensics"
In Proceedings of AusCERT Asia Pacific
Information Technology Security Conference 2004
(AusCERT2004), 2004.

[10] F. Pouget, M. Dacier, V.H. Pham, "Leurre.com: On
the Advantages of Deploying a Large Scale
Distributed Honeypot Platform" In Proceedings of
E-Crime and Computer Conference
2005.(ECCE'05) Monaco, March 2005.

[11] N. Provos,"A Virtual Honeypot Framework" In
Proceedings of the 13th USENIX Security
Symposium 2004, Boston USA, July 2004.

[12] F. Pouget, M. Dacier, H. Debar, "Honeynets:
Foundations for the Development of Early Warning
Systems", In Proceedings of the Cyberspace
Security and Defense: Research Issues, Publisher
Springler-Verlag, LNCS, NATO ARW Series,
2005.

[13] S. Jaiswal, G. Iannacconne, C. Diot., D.F. Towsley,
"Inferring TCP Connection Characteristics Through
Passive Measurements", In Proceedings of IEEE
Infocom 2004, Hong-Kong, March 2004.

[14] V. Paxson, "Strategies for sound Internet
measurement", In Proceedings of 4th ACM
SIGCOMM Conference on Internet Measurement
IMC’04, Italy, 2004.

[15] C. Bron, J. Kerbosch, "Algorithm 457: finding all
cliques of an undirected graph", Comm. ACM
Press, Vol. 16, Nb 9, 0001-0782, pp. 575-577,
New-York, USA, 1973.

[16] M. Pavan, M. Pelillo, "A new graph-theoretic
approach to clustering and segmentation", In
Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2003.

[17] J. Lin, E. Keogh, S. Lonardi, B. Chiu, "A symbolic
representation of time series, with implications for
streaming algorithms", In Proceedings of 8th ACM
SIGMOD workshop on Research Issues in data
mining and knowledge discovery, California, USA,
2003.

[18] C.C. Zou, W. Gong, D. Towsley, "Code Red Worm
Propagation Modeling and Analysis", In
Proceedings of ACM CCS’02, Washington DC,
USA, November 2002.

[19] B. McCarty, "Botnets: Big and Bigger", In IEEE
Security and Privacy, 1(4):87-90, 2003.

[20] J. Zimmermann, A. Clark, G. Mohay, F. Pouget, M.
Dacier, "The Use of Packet Inter-Arrival Times for
Investigating Unsolicited Internet Traffic", In
Proceedings of the First International Workshop on

Internet Attack Knowledge Discovery via Clusters and Cliques of Attack Traces 31

Systematic Approaches to Digital Forensic
Engineering SADFE 2005, Taiwan, November
2005.[1]Nazario J., “Defense and Detection
Strategies against Internet Worms”. Artech House,
2004.

Author Biographies
Fabien Pouget recently completed his Ph.D. at the Institut Eurecom, France.
He received his master of Science from the Ecole Nationale Superieure des
Telecommunications (ENST) in 2002 after having worked as internship
student in the IBM Research laboratory in Zurich, Switzerland. He joined
the Network Security Team (nsteam) at Eurecom the same year. His
research and teaching interests include computer and network security. He
is involved in many projects on intrusion detection systems and honeypots
and his PhD subject deals with alert correlation.

Marc Dacier is a professor at the Eurecom Institute. He also is an associate
professor at the University of Liege in Belgium. From 1996 until 2002, he
worked at IBM Research as the manager of the Global Security Analysis
Lab. In 1998, he co-founded with K. Jackson the "Recent Advances on
Intrusion Detection" Symposium (RAID). He is now chairing its steering
committee. He also was the co-director, with Brian Randell from the
University of Newcsastle, of the MAFTIA European Project (Malicious and
Accidental Fault Tolerance for Internet Applications). He serves on the
program committees of major security and dependability conferences and is
a member of the steering committee of the "European Symposium on
Research for Computer Security" (ESORICS). He serves on the editorial
board of the IEEE Transactions on Dependable and Secure Computing
(TDSC). He is leading the Leurre.com project (www.leurrecom.org), a
worldwide distributed honeypot system deployed in more than 20 different
countries. His research and teaching interests include computer and
network security, intrusion detection, network and system management. He
is the author of numerous international publications and several patents.

Jacob Zimmermann is an postdoctoral fellow with the Information
Security Institute at Queensland University of Technology in Brisbane,
Australia. He completed his PhD on policy-based intrusion detection using
noninterference in December 2003 at Supelec, France and joined the ISI in
January 2005. His current research topics include policy-based intrusion
detection, exploitation of vulnerabilities and honeypot traffic analysis.

Andrew Clark is a researcher with the Information Security Institute at
Queensland University of Technology in Brisbane, Australia where he has
been employed since 1992. He obtained his PhD in 1998 in the field of
information security and has been involved with numerous projects in that
field with industry partners. He is a member of the program committee of
the "Recent Advances in Intrusion Detection" (RAID) conference. He
currently supervises a number of students researching in the areas of
intrusion detection and computer forensics. His current research interests
are in the areas of honeypots, wireless network security and intrusion
detection.

George Mohay is an Adjunct Professor in the Information Security
Institute at the Queensland University of Technology, Brisbane, Australia.
Prior to that he had been Head of the School of Computing Science and
Software Engineering from 1992 to 2002. His current research interests lie
in the areas of computer security, intrusion detection, and computer
forensics. He has worked as a visiting researcher while on sabbatical leave
at Stanford University in 1981, Loughborough University in 1986, Bristol
University in 1990 and the Australian National University in 2000. He
graduated BSc(Hons) (UWA) in 1966 and PhD (Monash) in 1970. He
supervises and has supervised PhD and Masters students in the above areas.
He is currently involved as chief investigator in a number of related funded
research projects: in the area of computer forensics with Australia’s DSTO
(Defence Science and Technology Organization), a DEST FAST sponsored
project on Internet security, and an ARC sponsored project on intrusion
detection. Since 1995 he has been involved in over ten funded projects,
including a number of other ARC projects. His publications include the
recently published book Computer and Intrusion Forensics. He is a
program committee member for a number of international conferences:
RAID - Recent Advances in Intrusion Detection, ACM CCS (Computer and
Communications Security), ACISP (Australasian Conference on

Information Security and Privacy), SADFE (Systematic Approaches to
Digital Forensic Engineering) and ICA3PP (International Conference on
Algorithms and Architectures for Parallel Processing); and he is program
committee co-chair for the research stream of the annual AusCERT security
conference. He is a member of the ACM, and of the IEEE Computer
Society.

32 Pouget, Dacier, Zimmerman, Clark & Mohay

