
PULSE, a Flexible P2P Live Streaming System
Fabio Pianese

France Telecom - Division R&D
Issy-les-Moulineaux, France

fabio.pianese@rd.francetelecom.com

Joaquín Keller
France Telecom - Division R&D

Issy-les-Moulineaux, France
joaquin.keller@rd.francetelecom.com

Ernst W. Biersack
Institut Eurecom

Sophia-Antipolis, France
erbi@eurecom.fr

Abstract— With the widespread availability of inexpensive
broadband Internet connections for home-users, a large number
of bandwidth-intensive applications previously not feasible have
now become practical. This is the case for multimedia live
streaming, for which end-user’s dial-up/ISDN modem connections
once were the bottleneck. The bottleneck is now mostly found
on the server side: the bandwidth required for serving many
clients at once is large and thus very costly to the broadcasting
entity. Peer-to-peer systems for on-demand and live streaming
have proved to be an encouraging solution, since they can shift
the burden of content distribution from the server to the users
of the network. In this work we introduce PULSE, a P2P system
for live streaming whose main goals are flexibility, scalability,
and robustness. We present the fundamental concepts of PULSE
along with its intended global behavior and describe in detail the
main algorithms running on its nodes.

I. INTRODUCTION

The distribution of multimedia content over a network
can be performed either on demand or live. On demand
distribution is suitable for media files that can be reproduced
at any moment, with loose timing constraints such as some
maximum delay between user request and start of playback.
Live streaming involves a continuous flow of information that
is (supposedly) being generated at that instant and is thus
bound to be immediately consumed; media streams, given their
ephemeral nature, are by definition quite sensitive to playback
delay. Our work focuses on the problem of live media distri-
bution to large user populations with heterogeneous network
access capabilities, as found in today’s Internet.

Native group communication infrastructures would be an
efficient solution to this problem. Unfortunately, IP multicast
suffers from incomplete deployment in the core of the network
and lacks support by most commercial ISPs. Therefore dis-
tributing data from one source to multiple destinations requires
an applicative solution.

The traditional client-server model is suitable for live
streaming. The server must directly provide the stream to
all of its clients: it needs sufficient computational resources
and, most importantly, very large network pipes. The system
must be dimensioned for a maximum number of simultaneous
users, which determines the required upstream bandwidth.
Sudden peaks of activity (flash crowds, slashdot effect, etc.)
are common phenomena that may lead to disruption or denial
of service. For this reason, servers are often over-provisioned
with capacity and resources that won’t be used most of the
time. The costs incurred by the media provider can thus grow
very high.

Peer-to-Peer networks have emerged in the last few years as
a promising approach to solve these cost issues [1]. A common
aspect of these systems is the shift of the distribution load
and serving responsibility from the streaming source to all
the entities in the P2P network. The basic building blocks,
called nodes or peers, are no longer passive receivers of the
data but can act both as clients and servers at the same time:
stream data are simultaneously received, played, and passed
on to fellow peers. The existing P2P live streaming systems
present different architectures. They can be roughly classified
into three main families:

a) Structured: in these systems, nodes are organized
following a hierarchical tree structure to form an application-
layer overlay network. Each node receives the whole data
stream from its parent and transmits it to its children (if any).
Differences between systems of this family concern the way
nodes are organized and the algorithms used to build and repair
the system. Some of the systems in this family are SpreadIt
[3], PeerCast [4], ESM [5], NICE [6], ZigZag [7].

b) Unstructured: in these systems, the associations be-
tween the nodes are driven by the data they have previously re-
ceived: the stream is broken by the source into chunks that are
then made available to the peers. Nodes independently request
and download the chunks they need to complete the stream.
The concept of overlay network is thus not entirely appropriate
to describe such a dynamic data trading mesh of connections
established by the nodes. Systems like DONet/CoolStreaming
[8] belong to this family.

c) Other: these systems do not belong strictly to one of
the previous families. They range from hybrid architectures
(structured control overlay superposed to unstructured data
trading mesh) such as Bullet [9], to systems that combine
coding techniques with multiple structured overlays (stream
split into multiple flows that are sent through disjunct trees)
such as Splitstream [2].

A common assumption made by all these systems is that
all the peers can (and want to) cooperate to the replication of
the stream. NICE and ZigZag require for instance that most
peers have a guaranteed minimum outbound bandwidth, i.e.
an integer multiple of the stream bandwidth, while Bullet
and Splitstream suppose that all nodes will take an active
role and contribute at least as much as they are receiving.
In DONet/CoolStreaming, the observed link capacity (both
incoming and outgoing) is used to improve the mesh quality
over time.

To the best of our knowledge, no existing system tries
to reward user participation and to discourage peers from
contributing an insufficient amount of resources. Current ap-
proaches ignore the fact that peers can not meet the minimum
outgoing bandwidth for technical reasons (asymmetric access
technology such as ADSL, firewall issues) or because of
selfish user behavior (tampering with the peer’s algorithms,
artificial data rate limitation, etc.). With PULSE, we attempt to
address this issue by introducing various forms of incentives to
cooperation in an unstructured, data-driven P2P live streaming
system. These incentives, which are inspired to the ’altruistic
tit-for-tat’ strategy used by BitTorrent [13] in the field of bulk
data distribution, were specifically adapted to take into account
the dynamic nature of live data streams.

In the next section, we describe the PULSE system, both at
the global and at the peer level. In Section 3 we present the
main algorithms executed by a PULSE peer. Finally, we draw
our conclusions in Section 4.

II. PULSE: SYSTEM DESCRIPTION

We argue that placing nodes in the system according to their
current trading performances is an important way to improve
the data replication efficiency, both in terms of average re-
ception delay and data loss rate. For instance, if nodes whose
resources are scarce were systematically served recent data,
they could slow down or even disrupt the distribution process.
Intuitively, resource-rich nodes located near the source are
able to serve a larger number of neighbors with more recent
data. This placement can reduce the overall average reception
delay for the whole network, given a fixed serving capacity.
Moreover, nodes should also be able to freely roam in the
system and to react to global membership changes and local
bandwidth capacity variations over time.

PULSE is a P2P unstructured live streaming system built
around these principles. It is designed to operate in scenarios
where the nodes can have heterogeneous and variable band-
width resources. The approach used by PULSE is data-driven
and receiver-based. Peers implement data exchange policies
that enforce and reward node cooperation. These incentives
to resource contribution allow a gradual improvement in the
quality of the data trading mesh and help reduce the average
stream reception delay.

A. Network Overview
All PULSE nodes are functionally identical. They are free

to exchange control information and data from the stream.
Associations between nodes are the result of independent
decisions, leading to pairwise negotiations and data exchanges.
The connections, which are independently established by the
peers, form a system-wide mesh of data trading/control links.
This mesh is difficult to describe analytically, since it is not
built following global criteria and since it depends on the
current and past state of the data exchange in the system.
Data exchange performances are in turn determined by many
parameters. The most important ones are the topological char-
acteristics of the underlying network, the resources available

at each peer, and the chunk distribution/retrieval algorithms
executed by the nodes.

B. About the Media Stream
The stream is a continuous flow of media data encoded

at the streaming source. In this paper we assume that the
stream bit-rate (SBR) is constant, even if this is not required.
The source then splits the encoded stream into a series of
chunks. At this stage, the source may apply to the data fixed-
rate error correction codes, such as FEC [10], or other forms
of redundant encoding, such as MDC [11], to achieve better
resilience to chunk loss.

Chunks are numbered and marked with their original encod-
ing time at the source (we call this time reference the media
clock) to allow peers to correctly rebuild the initial stream and
estimate their own play-out delay. The source may also want
to protect data integrity by adding a digital signature to each
chunk. This requires every PULSE node receiving the stream
to know the source’s public key and verify the signature on
each chunk. The integrity mechanism is mainly useful when
there is the risk of data pollution by malicious peers.

Chunks are then made available to all the PULSE nodes at
a fixed rate. In our case, where SBR is constant, the chunk
size is also constant, otherwise it would fluctuate around an
average size.

C. Lag Reference System
In Figure 1 we illustrate the fundamental concepts and

variables used throughout this paper. The horizontal axis
represents the lag, which is defined as the age of a chunk with
respect to the current media clock. The lag value of a given
chunk grows linearly over time, as new data are encoded at
the source and present data become older.

We chose this ’differential’ reference system because it will
ease the representation of the buffer dynamics. For instance,
since the play-out rate is constant, the chunk a node should be
playing at any given moment is described by a fixed lag value,
which we will call TV . This notation also allows us to define
the range of chunks a node is both interested in receiving and
capable to provide at some point in time by two values: the
average lag of the chunks the node is requesting, TBavg

, and
the lag of the chunk a node is going to discard from its buffer,
TD. The value of TBavg

is the average of recent TBinst
values

sampled over a fixed time frame. From now on, we will call
the interval [TBavg

, TD] the buffer delay range of a node.
This notation is mainly useful for the phase of peer discov-

ery, when it is important to find nodes that are able to provide
useful chunks. We can imagine that, when the system is in a
steady state, nodes tend to settle on constant average reception
delays. In this situation, to discover a potential partner, it
is sufficient to compare at any time the nodes’ buffer delay
ranges. This can eliminate the need of continuously sending
and requesting updated buffer information on a chunk-by-
chunk basis. On the other hand, when the system is not
in steady state, nodes’ buffer delay ranges can fluctuate.
However, the information on the buffer delay range is still

2

Lag (T)

Zone of Interest Sliding Window TD

TV

TQ
Source
TB = 0()

Trading Window

inst
TB

Buffer Edge
//

Fig. 1. A PULSE node’s data buffer

much less volatile than the information on single chunks or
chunk ranges: in normal operating conditions (i.e. while most
nodes manage to retrieve a sufficient number of chunks on a
regular basis), a node’s reception delay will typically change
quite slowly over time. It is thus still possible to use the
buffer delay ranges, within a reasonable time frame from their
computation, as an approximate and concise representation of
the remote nodes’ current buffer content.

D. Peer’s Structure
A PULSE peer is an application that interfaces with the

network to steadily retrieve data chunks and control messages.
Its goal is to reconstruct the original stream of media data and
to pass it on to the software player. Its main components are 1)
the data buffer, where chunks are stored before playback, 2)
the knowledge record, where information is kept about remote
peers’ presence, data content, past relationships, and current
local node associations, and 3) the trading logic, whose role is
to request chunks from neighbors and to choose and schedule
the ones that are to be sent.

1) Data Buffer: Each node has a buffer where it collects
and stores the data chunks prior to playback (Figure 1).

Definitions: The buffer uses a sliding window to regulate
the stream reception. The sliding window is W chunks wide.
Its goal is to output a stream of chunks with a desired
maximum loss ratio. We call buffer edge the leftmost end of
the sliding window. A second window, called zone of interest,
lies on the left of the buffer edge and covers the chunks that
will soon be needed as the sliding window moves. We refer to
the sequence of chunks covered by these two windows as the
peer’s trading window, since it contains all chunks the peer is
currently trying to obtain through exchanges with neighbors.

We define by instantaneous position of a node in the system,
referred to as TBinst

, the lag of its buffer edge from the source.
This value can fluctuate quickly, so nodes keep a running
average of their instantaneous position, previously referred to
as TBavg

, to filter the short-term position variability due to the
unpredictable delays of the data exchange process. As above,
TD is the fixed lag after which a chunk can be discarded.

Moreover, we define TQ as the interval of chunks ranging
from the end of the sliding window to the chunk being
currently played. The play-out delay TV is initially set as
TV = TBinst

+ W + TQinit
after enough data chunks (to fill

at least the configurable TQinit
interval) have been gathered.

As TBinst
is free to change and since TV remains constant

(until the peer either disconnects or suffers from buffer under-
run), TQ is then equal to TV − (TBinst

+ W). TQ’s function
is twofold: it grants an initial safety margin against variations
of TBinst

over time, and the changes in its size can be used by
peers to evaluate their current data-reception stability.

Operation: A sliding tolerance parameter S defines the
minimum amount of chunks that have to be present inside the
sliding window before it can move forward. The maximum
chunk loss rate tolerated during normal peer operation is
thus bound by LR = 1 −

S
W

. The system-wide parameter
LRmax is equal to the amount of redundant coding performed
by the source. The value of S at any peer must be set so
that LR ≤ LRmax to ensure the complete recovery of the
original stream, but peers with enough bandwidth resources
can obviously decrease their LR tolerance at will.

If less than S chunks are available, the sliding window
cannot move. The lag of all the chunks it contains increases as
time passes and as new chunks are generated. In this situation,
the window keeps drifting on the lag axis (to the right of Fig.
1) and TBinst

grows at constant speed. Only when at least S
chunks have been collected, the window is allowed to slide
and to reduce its Tbinst

(to the left of Fig. 1). The window
will then keep sliding as long as it contains at least S chunks.

Over time, TBavg
will be either decreasing, if the window

is sliding at a higher average speed than the source generates
chunks, or growing, if the window is stuck waiting to fill a
gap or sliding with a lower speed.

2) Knowledge Record: The strict timing constraints on the
data retrieval process emphasize the central importance of the
concept of node position in the system.

In PULSE, the position of a node carries two pieces of
information: an explicit one, that is the range of chunks a node
is able to serve, and an implicit one, that is an estimate of the
peer’s trading capabilities related to the incentive mechanisms.
Intuitively, cooperating peers will be able to receive new
chunks faster than selfish ones, and thus will find themselves
nearer to the source.

Node decisions are based on the current locally available
knowledge, which includes:

• information gathered through direct measurements of
network parameters (RTT , data throughput)

• advertisements about the address and buffer delay range
[TBavg

, TD] of other peers. These low-priority mes-
sages can either be exchanged among peers using gos-
sip/epidemic protocols such as SCAM [12], or distributed

3

Missing
Recovery

Group

Node P
P’s Neighbors
Other Nodes

P’s "missing" links
P’s "forward" links
Source

Lag

Fig. 2. A PULSE peer and its exchange sets (MISSING and FORWARD)

upon request by a centralized ’stream tracker’ (similar to a
BitTorrent tracker). Nodes known with this level of detail
can be selected as targets for data exchanges.

• detailed accounts of the exact content of remote peers’
buffers. These high-priority messages contain the instan-
taneous node position TBinst

, TD, a bitmap summarizing
the chunks present in the trading window, and (option-
ally) explicit request/denial bitmaps for chunks in that
range. Usually, nodes known with this level of detail are
currently engaged in data exchange with the local peer.

• local records of previous trading interactions, in the form
of a cumulative history score H .

The peers we are trading data with fall into two groups,
MISSING and FORWARD (Figure 2). Peers in the MISSING
exchange set are chosen among the “neighbors”, whose trading
window is overlapping to ours. Data exchanges with them
can thus be mutual, if both sides have chunks the other one
needs. These partners are likely to provide most of the chunks
the local peer needs, as long as the local peer reciprocates.
FORWARD exchange partners, on the other hand, may have
a non-overlapping trading window. This means that, while
the local peer can provide them with data, they cannot give
back because all the data they can offer is already present
in the local buffer. The FORWARD peer set helps introduce a
component of altruism in the system and, at the same time,
allows resourceful nodes to contribute more of their serving
capacity to the system.

3) Trading Logic: The trading logic controls all the as-
pects of chunk request, selection, and scheduling. It processes
the information coming from both the local buffer and the
knowledge logic to decide which chunk will be sent to which
neighbor.

III. ALGORITHMS

The algorithms presented in this section make up the core of
the PULSE system. They determine how each node chooses its
partners for data exchange, how chunks to be sent are chosen
and scheduled, and which chunks are to be requested from
each neighbor. The following algorithms are all based on the
assumption that peers a) have some knowledge of the other
peers in the system, acquired through the normal mechanics

of information exchange, b) can determine their position in
the stream with respect to the media clock, and c) know or
can estimate the maximum outbound bandwidth they will be
able to provide.

A. Peer Selection
The main algorithms used for peer selection are an altruistic

tit-for-tat algorithm similar to the one used in BitTorrent, and
a simple cumulative trust metric. They are both executed at the
start of each EPOCH, and give as result two lists that contain
peers to which data will be provided.

1) History Score: Every node maintains a record of the
previous interactions with every other peer as a numeric value,
which we refer to as the history score. This mechanism enables
a peer to build a knowledge base about its fellow peers: its
goal is to gather data on past behavior that will allow nodes to
make informed choices when selecting future candidates for
FORWARD exchanges.

The algorithm is the following: each time a previously
unknown peer is encountered, it is given an initial positive
score. The node’s score is incremented by some fixed value
whenever a useful chunk is received from the node while it
is not present in any of the local exchange lists. The node
is subsequently added to a temporary exchange list which is
cleared at each EPOCH. The node’s score is decreased by
some fixed quantity whenever it is chosen as FORWARD partner
and receives one or more chunks from our peer.

At the moment, the history mechanism is quite simplistic,
and we are aware of this. We believe that a lightweight trust
metric similar to the one used in GnuNet [14] could be
successfully applied to our system, improving the quality and
strength of durable relationships, especially among the more
resourceful nodes. We leave this aspect for future work.

2) Bandwidth Allocation: At any given moment, each peer
must maintain several connections for sending and receiving
data. Peers can limit the number of connections they establish,
but network parameters such as link latency and data through-
put depend on external factors that peers cannot control.

To simplify the problem of bandwidth allocation, PULSE
peers reserve a fixed number of connection slots for data
exchange. Since today node bandwidths are often asymmetric
(with the outgoing bandwidth being much smaller than the
incoming) it is mainly important to regulate the number of
outbound connections.

A small number of connection slots (e.g. four) should be
reserved for MISSING exchanges: this number should be
chosen so that a peer with barely sufficient bandwidth re-
sources can attain a reasonable theoretical throughput on each
connection (e.g. SBR/4). Increasing the number of MISSING
slots will increase the network and computational overhead,
while improving the odds of quickly finding a useful chunk.

A variable number of slots can then be assigned, depend-
ing on the available outgoing bandwidth, to FORWARD ex-
changes. These slots will allow resourceful peers to contribute
their excess bandwidth to the system by providing other peers
with chunks without expecting an immediate return.

4

3) MISSING List: All the peers that sent us data during
the last epoch are ordered by the number of non-duplicate
chunks we received from them. A configurable quota of
MISSING exchange slots is then filled with the highest-ranked
nodes. When one or more MISSING slots remain available,
they are allocated a) to known nodes with a trading window
overlapping to ours, sorted by decreasing overlap size (the
network latency bias may also be taken into account), and
b) to randomly selected known nodes. Random selection is
mainly used during the bootstrap phase.

4) FORWARD List: Peers are ordered by decreasing history
score, and selected only if their trading window is not over-
lapping with the local trading window (i.e., the remote node is
currently farther from the source than the local peer). Nodes
already belonging to the MISSING list are discarded.

5) Source: The source differs from the other nodes since
it doesn’t need to engage in exchanges to get data chunks. It
always has a complete sliding window, and its lag value is zero
by definition. As a consequence, the peer selection algorithm
at the source also needs to be different.

Moreover the source, lacking the data exchange feedback
mechanism, could be exploited by malicious nodes that try
to retrieve all chunks directly. The attackers could thus avoid
contributing to the system and may also put in danger the
entire distribution process if the source’s bandwidth is small.
To mitigate this danger, the source must change the subset of
nodes it serves at each EPOCH and must avoid sending groups
of contiguous chunks to the same peer.

The peer selection algorithm we employ is similar to the
one used by the seeds in the latest BitTorrent software versions
[15]. At the beginning of each EPOCH, the source prepares
a list of known peers that have a TB value (instantaneous
or average) smaller than a fixed threshold. It then chooses
randomly a small subset to which it will send chunks during
this EPOCH. The source treats this list as its MISSING list.

B. Chunk Selection: Sending

A good chunk selection strategy is one that distributes the
chunks in an uniform way across the nodes. It should also en-
sure that the buffer content of nearby nodes is different enough
that they can engage in mutual transactions and concurrently
exploit their multiple connections. Finally, it should also take
into account remote peer’s requests, which prevent duplicate
chunks from being transmitted by several neighbors.

For all kinds of data exchanges, the chunks to be sent are
selected comparing the requests received from each peer (or
its whole buffer bitmaps, if a request was not specified) to the
chunks currently held in the whole local buffer. The selected
chunks are then sorted using some ordering criteria, and the
first one is chosen for sending. It is indeed possible to queue
several chunk uploads toward the same peer to benefit from
the effects of transfer pipelining.

The criterion we are currently using for ordering chunks
is a “Least Sent First, Random” strategy. Each peer keeps a
counter of how many times it has sent each chunk. The one

that has been sent the least number of times is chosen. In case
of a tie, one of the chunks is selected randomly.

This scheduling strategy showed encouraging results in
preliminary simulations, since the newest/rarest chunks to be
received are among the first that are sent, getting a higher pri-
ority than chunks that have already been replicated. Breaking
ties with a random choice (instead of, for example, by selecting
the chunk whose lag is lowest) aims to avoid the preferential
replication of the same chunks that may happen in situations
where several peers have their buffer windows synchronized.

C. Chunk Selection: Requesting
The algorithm for chunk requests is similar to the heuristic

used in DONet/CoolStreaming. Its purpose is to request the
rarest chunks among those that are locally available, and to
distribute the requests across different possible providers.

Using the local knowledge gathered from the MISSING
neighbor set, chunks that are rarest across the neighborhood
are requested with higher priority than more common ones.
Chunks with the same number of providers are randomly
requested from one of the neighbors that can provide them. To
limit the load on any single peer, a maximum limit of requests
per node is set.

The combined effect of the sending and requesting policies
appears to be satisfactory in our preliminary simulations. The
information of the local rarity of a chunk, as seen by the
requester, is implicitly conveyed to the sender through the
request itself. Receiving a previously requested chunk, on the
other hand, enables a peer to propagate with high priority a
chunk which is still supposed to be rare. The evaluation of
alternative chunk selection schemes is left as a subject for
future work.

D. Simulation Results
We performed simulations of the algorithms’ behavior for

different network sizes, bandwidth distributions, buffer param-
eters, and node arrival patterns. While we cannot include a
full discussion about our results in this paper, we will briefly
illustrate the most striking global properties.

Our simulations are performed using a simple round-based
simulator. The simulated network has a single-stub topol-
ogy. Nodes are connected to the stub through access links
whose bandwidths are configurable. Bandwidth allocation is
performed using a slot-based mechanism: each slot allows the
transmission of one data chunk between two nodes during
one round. Network latencies are not taken into account in
the model: control information is propagated without delay
and the only source of latency is due to data transfers. While
the information about updated buffer delay ranges is available
to everyone, a node’s detailed buffer situation is only known
to the nodes that have the node in their exchange lists or that
received messages from the node during the current EPOCH.

Figure 3 illustrates two five-minute traces for a network
of one thousand nodes. Four bandwidth classes with strongly
heterogeneous outbound capacities (from SBR/2 to 10·SBR)
are present. The first trace is obtained with all nodes joining

5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

Av
er

ag
e

La
g

[c
hu

nk
s]

Time [s]

TBavg distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

-50

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

Av
er

ag
e

La
g

[c
hu

nk
s]

Time [s]

TBavg distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

Fig. 3. Simulation traces for a PULSE network of 1000 peers (4% “very
rich” peers with symm. bandwidth of 10·SBR, 21% “rich” peers with symm.
bandwidth of 3 ·SBR, 20% “normal” peers with asymm. bandwidth of SBR
UL and 2 · SBR DL, and 55% “poor” peers with asymm. bandwidth of
SBR/2 UL and 2 · SBR DL). SBR = 16 chunks/s. Top: all nodes join at
t = 0s - Bottom: flashcrowd arrivals around t = 120s.

simultaneously at t = 0s, while the second shows the effect of
a flashcrowd-like arrival pattern, with peak arrival rate around
t = 120s. In both cases, after a short initial instability, the
system converges to a small average delay value, which is
approximatively 20 chunks. The trading window size for these
runs was set to 64 chunks, i.e. 4 seconds worth of stream
data. Instability is mainly due to the randomness of the arrival
process: the nodes that didn’t manage to connect at the first
attempt have to disconnect before retrying.

In the second trace we can observe the response of a
running system to the addition of a substantial number of
nodes in a short time (more than 500 nodes join between
t = 60s and t = 180s): while the class delay averages
slightly increase, the delay variance of the poorest classes
is especially impacted. Intuitively, we can see that the role
of tit-for-tat incentives is mostly important when resources
become locally scarce, as happens when many new nodes
join or when some rich nodes quit the system. In these cases,
more resourceful nodes will manage to obtain a better position
(or to avoid performance degeneration) with respect to the
others. Otherwise, the altruistic allocation of excess resources

tends to prevail, and produces a system with homogeneous
performances, regardless to individual bandwidth contribution.

IV. CONCLUSIONS

In this paper we presented PULSE, a P2P system for live
media streaming. Our system’s innovative features are the
presence of strong incentives to share combined with the
absence of a fixed overlay structure. Nodes try to reduce
their lag from the source by trading chunks and selecting
cooperative neighbors for lasting relationships.

The resulting PULSE topologies dynamically adapt to the
available bandwidth resources. The system can work in a wide
range of conditions since it does not put a lower bound on the
contribution required from each node. Moreover, especially
when overall outgoing bandwidth is scarce, the more resource-
ful nodes tend to stabilize on lower lag values and to obtain
chunks from the source earlier. This adaptive node placement
scheme confers a good scalability to the system.

We currently perform extensive simulations of PULSE for
various scenarios to gain a better understanding of the impact
of local settings on global dynamics. As a next step, we will
implement a full-fledged prototype of PULSE. The long-term
focus of our work is the large-scale deployment of our system.

REFERENCES

[1] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Fea-
sibility of Supporting Large-Scale Live Streaming Applications with
Dynamic Application End-Points”, in Proc. of ACM SIGCOMM ’04,
Portland, Oregon, OR, USA, August 2004

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Multicast in Cooperative
Environments”, in ACM SOSP, Bolton Landing, NY, USA, October 2003

[3] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming live media
over a peer-to-peer network”, in Work at CS-Stanford. Submitted for
publication, 2002

[4] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming live media
over peers”, Tech. Rep. 2001-31, CS Dept., Stanford University, 2001

[5] Y. Chu, A Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkulchai, J.
Zhan, and H. Zhang, “Early Experience with an Internet Broadcast
System Based on Overlay Multicast”, Technical Report CMU-CS-03-
214, Carnegie Mellon University, December 2003

[6] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast” in ACM SIGCOMM, Pittsburgh, PA, USA, 2002

[7] D. A. Tran, K. A. Hua, and T. T. Do, “A Peer-to-Peer Architecture for
Media Streaming”, in IEEE JSAC, vol. 22, no. 1, January 2004

[8] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet:
A Data-driven Overlay Network for Live Media Streaming”, in IEEE
INFOCOM’05, Miami, FL, USA, March 2005

[9] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh”, in ACM SOSP,
October 2003

[10] T. Nguyen, and A. Zakhor, “Distributed Video Streaming with Forward
Error Correction”, in Proc. of Packet Video Workshop, Pittsburgh, USA,
April 2002

[11] V. K. Goyal, “Multiple description coding: Compression meets the
network”, in IEEE Signal Processing Magazine, September 2001

[12] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Peer-to-peer mem-
bership management for gossip-based protocols”, in IEEE Transactions
on Computers, Vol. 52, No. 2, February 2003

[13] B. Cohen, “Incentives Build Robustness in BitTorrent”, in Proc. of
Workshop on the Economics of P2P Systems, 2003

[14] C. Grothoff, “An Excess-Based Economic Model for Resource Alloca-
tion in Peer-to-Peer Networks”, in Wirtschaftsinformatik 3-2003, June
2003

[15] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Understanding Bit-
Torrent: An Experimental Perspective”, Tech. Report inria-00000156,
INRIA, Sophia Antipolis, November 2005.

6

