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Abstract

We compare the ASR performances of different fea-
tures sets (MFCC, PLP, constant JRASTA PLP and vari-
able scale piece-wise quasi-stationary analyzed MFCC
features [1]) on the OLdenburg LOgatome speech cor-
pus (OLLO)[2]. OLLO database is rich in various speech
variabilities such as different speaking styles (slow, fast,
statement, questioning, loud and soft) and with almost
equal sampling of the male and female speakers. A
HMM-GMM system has been trained on the no-accent
part of the OLLO database that consists of roughly
13,500 utterances and then tested on the no-accent part
of the test set that roughly consists of 13,800 utterances.
Each of these utterances correspond to a logatome. We
compare state-of the art fixed time scale (20ms long win-
dows) features with the recently proposed variable scale
quasi-stationary analyzed[1] MFCC features This tech-
nique results in a variable scale time spectral analysis,
adaptively estimating the largest possible analysis win-
dow size such that the signal remains quasi-stationary,
thus the best temporal/frequency resolution tradeoff. The
speech recognition experiments on the OLLO database,
show that the proposed variable-scale piecewise station-
ary spectral analysis based features indeed yield im-
proved recognition accuracy in clean conditions, com-
pared to MFCC, PLP and constant-JRASTA PLP fea-
tures.

1. Introduction

In an information bearing signal such as speech or im-
age, the information is propagated through the slow evo-
lution of one quasi-stationary segment into another. For
instance vowels slowly evolve to consonants and vice
versa. The current ASR systems make a simplified as-
sumption that all the stationary events are of uniform du-
ration and the duration is typically assumed to be

�������
.

This poses a major limitation as certain sounds (events)
such as vowels last for typically �	� ���
��������
���

while
certain short-time-limited sounds such as plosive and stop
last for � �����

. The specific instants in a signal wave-
form when this stationarity switching happens, the rate
at which this switching occurs and the duration of sus-
tained stationary segments are all very important quanti-
ties which need to be detected and estimated to extract all

the useful information from the speech signal
Most of the Automatic Speech Recognition (ASR)

acoustic features, such as Mel-Frequency Cepstral Co-
efficient (MFCC) or Perceptual Linear Prediction (PLP),
are based on some sort of representation of the smoothed
spectral envelope, usually estimated over fixed analysis
windows of typically 20ms to 30ms of the speech sig-
nal [13]. Such analysis is based on the assumption that
the speech signal can be assumed to be quasi-stationary
over these segment durations. However, it is well known
that the voiced speech sounds such as vowels are quasi-
stationary for 40ms-80ms while, stops and plosive are
time-limited by less than 20ms [13]. Therefore, it implies
that the spectral analysis based on a fixed size window of
20ms-30ms has some limitations, including:

� The frequency resolution obtained for quasi-
stationary segments (QSS) longer than 20ms is
quite low compared to what could be obtained us-
ing larger analysis windows.

� In certain cases, the analysis window can span
the transition between two QSSs, thus blurring the
spectral properties of the QSSs, as well as of the
transitions. Indeed, in theory, Power Spectral Den-
sity (PSD) cannot even be defined for such non
stationary segments [9]. Furthermore, on a more
practical note, the feature vectors extracted from
such transition segments do not belong to a single
unique (stationary) class and may lead to poor dis-
crimination in a pattern recognition problem.

In this work, we make the usual assumption that the
piecewise quasi-stationary segments (QSS) of the speech
signal can be modeled by a Gaussian AR process of
a fixed order � as in [6, 10, 11]. We then formulate
the problem of detecting QSSs as a Maximum Likeli-
hood (ML) detection problem, defining a QSSs as the
longest segment that has most probably been generated
by the same AR process. As is well known, given a
���	� order AR Gaussian QSS, the Minimum Mean Square
Error (MMSE) linear prediction (LP) filter parameters� � ��� ��� � � ��������� � � �!� �#"

are the most “compact” representa-
tion of that QSS amongst all the ���	� order all pole fil-
ters [9]. In other words, the normalized “coding error”1

1The power of the residual signal normalized by the number of sam-
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is minimum amongst all the � �	� order LP filters. When
erroneously analyzing two distinct � �	� order AR Gaus-
sian QSSs in the same non-stationary analysis window,
it can be shown that the “coding error” will then always
be greater than the ones resulting of QSSs analyzed indi-
vidually in stationary windows[12]. As further explained
in the next sections, this forms the basis of our crite-
ria to detect piecewise quasi-stationary segments. Once
the “start” and the “end” points of a QSS are known, all
the speech samples coming from this QSS are analyzed
within that window, resulting in (variable-scale) acoustic
vectors.

The main contribution of the present paper is to
demonstrate that the variable-scale QSS spectral analy-
sis technique can possibly improve the ASR performance
as compared to the fixed scale spectrum analysis. We
do a comparative study of the proposed variable-scale
spectrum based features and other state-of-the art features
such as MFCC[3], PLP[5], C-JRASTA PLP[4]. In the
following sections we will describe the PLP[5], JRASTA-
PLP[4] and the variable scale piece-wise quasi-stationary
analyzed[1] MFCC features followed by logatome recog-
nition experiments on the OLLO[2] database using these
features.

2. Perceptual Linear Prediction (PLP)
features

Over the past few decades, many variants of filter banks,
LPC, and cepstral vectors haven been used for speech
recognition. More recently, the majority of the systems
have converged to the use of a cepstral vector derived
from a filter bank that has been designed according to
some model of the auditory system. In the following we
will briefly describe some of the auditory inspired steps
involved in the PLP[5] feature computation.

� Compute a power spectral estimate for the analy-
sis window;typically this is done by windowing the
analysis segment, computing the FFT, and comput-
ing its squared magnitude to get the power spec-
trum.

� Integrate the power spectrum within overlapping
critical band filter responses. There are number
of forms used for these filters, but all of them are
based on a frequency scale that is roughly linear
below 1Khz and logarithmic above this point. The
Mel scale is based on the pitch perception and is
used in the filter banks for the MFCC approach.
Since it is based on human experimental data, there
are number of approximations and models that
have been used. In the mel case, the integration
step is done with a triangular window applied to
the log of the power spectrum. For the case of PLP

ples in the window

trapezoidally shaped filters are applied at roughly
1-Bark intervals. The trapezoidally shaped win-
dows are an approximation to the power spectrum
of the critical band masking curve from Fletcher. In
both cases, the net effect is to reduce the frequency
sensitivity over the original spectral estimate, par-
ticularly at higher frequencies. The higher frequen-
cies are also somewhat emphasized given the wider
filter bandwidths.

� Pre-emphasize the spectrum to approximate the un-
equal sensitivity of human hearing at different fre-
quencies. In most mel-cepstral analysis, this is ac-
tually done before the original spectral analysis,
and an important side effect is to eliminate the ef-
fects of the DC offsets in the speech signal.

� Compress the spectral amplitudes. Typically the
log is applied after the integration. In PLP, the cube
root is taken rather than the log which is an approx-
imation to the power-law relationship between in-
tensity and loudness.

� Perform an inverse DFT. It is a critical step for both
MFCC and PLP. In the former case, it is the step
that yields the cepstral coefficients. For PLP, since
the log has not been computed, the results are more
like autocorrelation like features( though they are
still from a compressed spectrum.)

� Perform spectral smoothing. Although the criti-
cal band spectrum suppresses some detail, another
level of integration has been shown to be useful
for reducing the effects of non-linguistic sources of
variance in the speech signal. In MFCC this step
is accomplished by cepstral truncation; typically
the lower 13 cepstral components are retained from
24 filter bank energies. Thus the resulting rep-
resentation corresponds to a smoothed spectrum.
In the case of PLP, an auto-regressive (derived by
the solution of linear equations constructed from
the autocorrelation of the previous step) is used
to smooth the compressed critical band spectrum;
as with conventional LPC, the resulting smoothed
spectrum is a better fit to the spectral peaks than
the valleys.

� use orthogonal representation. For MFCC no fur-
ther step is necessary to get orthogonal features-the
elements of the truncated cepstral vectors have this
property. For PLP, the autoregressive coefficients
are converted to cepstral coefficients.

3. Rasta processing

RASTA processing[4] tries to make speech analysis less
sensitive to the slowly changing or steady-state factors
in a speech signal. It replaces the conventional critical



band short term spectrum estimate of the PLP analysis
with a spectral estimate in which each frequency channel
is band-pass filtered by a filter with a sharp zero at zero
frequency. Since any constant or slowly varying compo-
nent in each frequency channel is suppressed by this op-
eration, the new spectral estimate is less sensitive to the
slow variations in the short-term spectrum. The bandpass
IIR filter used has a low-cutoff frequency at 0.26 Hz. The
filter slope declines 6db/octave from 12.8 Hz with sharp
zeros at 28.9 and 50 Hz.

4. Detecting stationarity change over point
in an auto-regressive signal

Consider an instance of a � �	� order AR Gaussian pro-
cess, x[n]

� ��� � � ����"
whose generative LP filter param-

eters can either be A ��� � � � � ��� � ��� � � � ����� � ��� � � � � � "
or can

change from A �	� � � � � ����� ��� � ��� � ��� ��� � � ���!� � "
to A 
��� � � � 
 ��� ��� � 
�� ������� ��� � 
�� � � "

at time � � where � � � � � ���
"
.

As usual, the excitation signal is assumed to be drawn
from a white Gaussian process and its power can change
from ������ to ������
 . The general form of the Power
Spectral Density (PSD) of this signal is then known to be����� ��� � � � 
� � ������ � � � �"! �$#&%$' � �)( �+* !,� � � 
 (1)

where
� �-! � s are the LPC parameters. The hypothesis test

consists of:

� H � : No change in the PSD of the signal . � � �
over

all �/� � � �0�
"
, LP filter parameters are A � and the

excitation (residual) signal power is � � .

� H � : Change in the PSD of the signal . � � �
at � � ,

where � � � � � ���
"
, LP filter parameters change

from A � to A 
 and the excitation(residual) signal
power changes from � � to � 
 .

Let, 1A � denote the maximum likelihood estimate (MLE)
of the LP filter parameters and 1� � denote the MLE of the
residual signal power under the hypothesis H � . The MLE
estimate of the filter parameters is equal to their MMSE
estimate due to the Gaussian distribution assumption [6]
and, hence, can be computed using the Levinson Durbin
algorithm [9] without significant computational cost.

Let x � denote
� . ��� ��� . � ����� � ��� . � � � � "

and x 
 denote� . � � �32 � ������� � . � � � "
. Under hypothesis H � , ( 1A � , 1��� ) are

the MLE of (A � , ��� ) estimated on x � , and ( 1A 
 , 1�4
 ) are the
MLE of (A 
 , � 
 ) estimated on x 
 , where x � and x 
 have
been assumed to be independent of each other. A Gen-
eralized Likelihood Ratio Test (GLRT) [12] would then
pick hypothesis H � if5 68739 � x � � 5 687 � � � x � � 1A � � 1� � � � � x 
 � 1A 
 � 1� 
 �

� � x � 1A � � 1��� � �;:�<
(2)

where
<

is a decision threshold that will have to be tuned
on some development set. In [1], we have shown that (2)
simplifies to the following,5 687)9 � x � � �� 5=6>7@? 1�BA�1�BC>D� 1��E AGF C DIH
 J (3)

In the present form, the GLRT
5 68739 � x �

has now a
natural interpretation. Indeed, if there is a transition point
in the segment x then it has, in effect,

� � degrees of free-
dom. Under hypothesis H � , we encode x using only �
degrees of freedom (LP parameters 1A � ) and, therefore,
the coding (residual) error 1� 
� will be high. However, un-
der hypothesis H � , we use

� � degrees of freedom (LP
parameters 1A � and 1A 
 ) to encode x. Therefore, the cod-
ing (residual) errors 1� 
� and 1� 

 can be minimized to reach
the lowest possible value.2 This will result in

9 � x �K: � .
On the other hand, if there is no AR switching point in
the segment x then it can be shown that, for large � � and�

, the coding errors are all equal ( 1� 
� � 1� 
� � 1� 

 ). This
will result in

9 � x �ML � .
Brandt[10] had derived (2) and it was later on

used by Obrect[11] for segmenting a speech signal into
phonemes. Obrect[11] had reported that on an average
their algorithm segments a phoneme into 2.2 segments
per phoneme. However they do not show any relation
of the ML detection to the variable scale quasi-stationary
spectral analysis of speech signals and its extension for
improved speech recognition as has been done in this
work.
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Figure 1: Typical plot of the Generalized log likelihood
ratio test (GLRT) for a speech segment. The sharp down-
ward spikes in the GLRT are due to the presence of a
glottal pulse at the beginning of the right analysis win-
dow (x 
 ). The GLRT peaks around the sample 500 which
marks as a strong AR model switching point

An example is illustrated in Figure 1. The top pane
shows a segment of a voiced speech signal. In the bottom

2When NA O and NA P are estimated, strictly based on the samples from
the corresponding quasi-stationary segments.



figure, we plot the GLRT as the function of the hypothe-
sized change over point � . Whenever, the right window
i.e the segment x 
 spans the glottal pulse in the begin-
ning of the window, the GLRT exhibits strong downward
spikes which is due to the fact that the LP filter cannot
predict large samples in the beginning of the window.
However, these downward spikes do not influence our de-
cision significantly as we are interested in large positive
value of the GLRT to detect a model change over point.
The minimum sizes of the left and the right windows are
��� �

and � � �
samples respectively. This explains the zero

value of the GLRT at the beginning and the end of the
whole test segment. The GLRT peaks around sample � ���
which marks a strong AR model switching point.

5. Relation of GLRT to Spectral Matching

As is well known the LP error measure possesses the
spectral matching property [7]. Specifically, given a
speech segment x, let its power spectrum (periodogram)
be denoted by X ������� �

. Let the all pole model spectrum
of the segment x be denoted as 1X � ��� ��� �

. Then it can be
shown that the MMSE error � 
� of the LP filter estimated
over the entire segment x is given by [7]� 
� � �
	F 	 X ������� �1X � ��� ��� ���� where, (4)1X � ��� ��� � � �� � � � � �=� � � � �"! �$#&%$' � �)( �+* !,� � � 
 (5)

Therefore minimizing the residual error � 
� is equivalent
to the minimization of the integrated ratio of the signal
power spectrum X ������� �

to its approximation 1X � ������� �
[7].

Substituting (4) in (3) we obtain,5 687)9 � x � � (6)

�� 5 687 ��� 	F 	 X E������ H�
X � E�� ��� H ���� A

� � 	F 	 X D E�� ��� H�
X D E�� ��� H �� � C>D � � 	F 	 X � E�� ��� H�

X � E�� ��� H �� � A F C>D
where, X ������� �

, X � ������� �
and X 
 ������� �

are the power spec-
tra of the segments x, x � and x 
 respectively. Similarly1X � ������� �

, 1X � ������� �
and 1X 
�������� �

are the MMSE ���	� or-
der all-pole model spectra estimated over the segments x,
x � and x 
 respectively. Therefore, 1X � ������� �

, 1X � ������� �
and1X 
 ��� ��� �

are the best spectral matches to their correspond-
ing power spectra. One way of interpreting (6) is that it is
a measure of the relative goodness between the best spec-
tral match achieved by modeling x as a single QSS and
the best spectral matches obtained by assuming x to con-
sist of two distinct QSS, namely x � and x 
 . This is further
explained as follows. If x � and x 
 are indeed two distinct
QSS, then X ��������� �

and X 
�������� �
will be quite different

and X ��� ��� �
will be a gross average of these two spectra.

In other words, the frequency support of X ������� �
will be

a union of those of the X � ������� �
and X 
�������� �

. 1X ��������� �

and 1X 
 ��� ��� �
, having � poles each, will match their cor-

responding power spectra reasonably well, resulting in a
lower value of the denominator in (6). However, 1X � ������� �
will be a relatively poorer spectral match to X ��� ��� �

as it
has only � poles to account for the wider frequency sup-
port. Therefore we incur a higher spectral mismatch by
assuming x to be a single QSS when in fact it is com-
posed of two distinct QSS x � and x 
 . This results in the
GLRT

5=6>7)9 � x �
taking up a high value. Whereas if x � and

x 
 are the instances of the same quasi-stationary process,
then so is x. Therefore X � ������� �

, X 
 ������� �
and X ������� �

are
nearly the same with similar all-pole models, resulting in
a value of the GLRT close to zero. The above discussion
points out to the fact that the QSS analysis based on the
proposed GLRT is constantly striving to achieve a better
time varying spectral modeling of the underlying signal
as compared to single fixed scale spectral analysis.

6. Experiments and Results

Table 1: Logatome recognition rate over the entire vari-
abilities.

MFCC 20ms 72.50
PLP 20ms 73.04
Constant JRASTA PLP 69.72
Proposed Variable-scale QSS MFCC 75.34

We have used the GLRT L(x) in (3) to perform QSS
spectral analysis of speech signals for ASR applications.
We initialize the algorithm with a left window size W L
= 20ms and a right window size W R = 10ms. We com-
pute their corresponding MMSE residuals and the MMSE
residual of the union of the two windows. Then, the
GLRT is computed using (3) and is compared to the
threshold. The parameter threshold

< �! � � was em-
pirically tuned to achieve the best recognition accuracy.
In general, the ASR results are slightly sensitive to the
threshold, although not in a huge way. If the GLRT is
greater than the threshold

<
, W L is considered the largest

possible QSS and we obtain a spectral estimate using
all the samples in W L. Otherwise,W L is incremented by
INCR=0.625ms and the whole process is repeated until
GLRT exceeds

<
or W L becomes equal to the maximum

window size WMAX= � �����
. The computation of a MFCC

feature vector from a very small segment (such as 10ms)
is inherently very noisy.3 Therefore, the minimum du-
ration of a QSS as detected by the algorithm was con-
strained to be

�������
. Throughout the experiments, a fixed

LP order �@� � �
was used. To avoid fluctuating Nyquist

frequency of the cepstral modulation spectrum[8], a fixed
shift size of � �����

was used in the algorithm. Compara-
tive study of the different feature sets was performed over

3Due to very few samples involved in the Mel-filter integration.



Table 2: Logatome recognition rate reported over each variabilities.

Feature Fast Slow Loud Soft Questioning Normal
MFCC 20ms 68.14 73.02 73.35 63.75 78.49 78.21
PLP 20ms 67.56 76.80 72.15 65.85 77.37 78.48
Constant JRASTA PLP 57.09 75.47 68.95 64.24 77.55 75.00
Proposed Variable-scale QSS MFCC 70.23 76.54 75.93 67.23 80.49 81.60

the OLLO database. In these experiments we decided to
recognize the entire logatome. The lexicon size is ��� �
that corresponds to 150 logatomes.

Hidden Markov Model and Gaussian Mixture Model
(HMM-GMM) based speech recognition systems were
trained using public domain software HTK on the NO-
accent part of the OLLO[2] training set that roughly con-
sist of 13,500 utterances. Three state left to right HMM
models were trained for each of the

� � phonemes in the
OLLO[2] database including silence as well. The lexi-
con consists of 150 logatomes which are either CVCs or
VCVs. The experiments reported in this paper are for the
entire logatome recognition on the No-accent test part of
the OLLO database that consists of roughly 13,800 utter-
ances. Each of these utterances correspond to an instance
of a logatome. Gaussian mixture models(GMMS) with� � Gaussian per state and diagonal covariance matrices
were used to model the emission probability densities of
the feature vectors. The number of parameters used in
the HMM-GMM system is the same for all the features
reported. The logatome recognition results for various
features are given in Tables 1, 2.

As can be noted from the Table 2, C-JRASTA PLP
has drastically poor performance on fast speech as com-
pared to the rest of the features that may be due to the
fact that RASTA processing involves band-pass filtering
of filter bank modulation energies in the range [2,8]Hz.
This may also imply that the range of the modulation fre-
quencies that correspond to speech is probably a func-
tion of the speaking rate. We note that the variable scale
QSS analyzed MFCC have better recognition accuracy as
compared to the fixed scale MFCC for all the six vari-
abilities. However, we note that PLP feature performs
significantly better than the MFCC feature on the slow
speech.( � � � 

% of PLP Vs ��� � � �
% of MFCC Vs �� �  ��

% of C-JRASTA PLP). However the variable scale QSS
analyzed MFCC compensates for this deficiency of the
fixed scale MFCC by reaching an accuracy of ��� � �  %
on slow speech.

7. Conclusion

We have demonstrated that the variable-scale piecewise
quasi-stationary spectral analysis of speech signal can
possibly improve the state-of-the-art ASR. Such a tech-
nique can overcome the time-frequency resolution lim-
itations of the fixed scale spectral analysis techniques.

Comparisons were drawn with the other state-of-the art
features based on the speech recognition accuracies.
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