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ABSTRACT
More than three decades of speech recognition research re-
sulted in a very sophisticated statistical framework. How-
ever, less attention was still devoted to diagnostics of
speech recognition; most previous research report on re-
sults in terms of ever-lower WER in various intrinsic or
environmental conditions.

This paper presents a diagnostics of the decoding pro-
cess of ASR systems. The purpose of our diagnostics is
to go beyond standard evaluation in terms of WERs and
confusion matrices, and to look at the recognized output
in more details. During the decoding phase, some specific
data are collected at the decoder as possible causes of er-
rors, and later are statistically analyzed using classification
and regression trees. Focusing on pure acoustic phone de-
coding without language modeling, we present and discuss
the results of the diagnostics that is used for an analysis of
impact of intrinsic speech variabilities on speech recogni-
tion.
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1 Introduction

Most of research in the field report results in terms of ever-
lower WER acquired over some baseline, leaving questions
about the causes of failures open. Evaluation of recog-
nizer performance is usually expressed in terms of few fig-
ures like WER and confusion matrix. Diagnostics comple-
ments the evaluation1. In terms of ASR technology, diag-
nostics is the identification and more challenging, the un-
derstanding of incorrect speech recognition. Diagnostics
of speech recognition should provide error patterns of the
decoding process as well as of the training process. This
paper aims to contribute to the diagnostics of decoding in
speech recognition.

Recognition may be studied in detail considering dif-
ferent linguistic or phonetic properties [2]. The recognition
results are usually identified using the acoustic-phonetic

1Evaluation (see e.g. [1]) is an assessment of the system, measuring
some parameters of the system , while diagnostics is a computing mecha-
nism to identify faults of the system.

classes [3, 4]. Some authors go further and try to find a
reason of phoneme confusion, or even their deletions and
insertions. In a recent work [5], authors explored some ar-
ticulatory properties of confused consonants. Comparing
human and computer speech recognition, they concluded,
that voicing information should actually be used for better
performance of machine speech recognition. In our work
we use a decision tree analysis, following work of [6, 7,
8]. The idea is to incorporate statistics of building decision
trees for finding factors that cause the systematic recogni-
tion errors.

This paper aims to extend the idea of using decision
trees for ASR diagnostics, and proposes phoneme diag-
nostic trees (PDTs). The analysis is done at the phoneme
level, and provides detailed results that were not available
in the previous approaches. The aim is to present a gen-
eral methodology, applicable to any analysis level (such
as acoustic-phonetic, linguistic) and in any variability. For
each basic phoneme used in an ASR system a PDT is con-
structed, which links incorrect recognitions of the phoneme
with a-priori specified sources of errors, hereafter called
factors or phoneme features2. During tree building only
features are selected that are statistically significant, and
so main sources of errors are found. Going over the PDT,
the values of the features are found, and this indicates the
reasons of ASR failures.

The paper is structured as follows. Section 2 de-
scribes selection of phoneme features. Section 3 overviews
the process of building PDTs, and section 4 depicts the use
of PDTs. Finally section 5 discusses the contribution of the
paper, and outlines future work.

2 Selecting phoneme features

Within the European DIVINES project (divines-
project.org), we study speech recognition deficiencies
in dealing with speech intrinsic variabilities as opposed
to using prior restrictive knowledge (for instance in the
form of very specific grammars). Therefore a specific
speech corpus, the OLLO database, has been recorded for
that purpose [9]. The database is designed for recognition

2We use the term ’phoneme features’ in this paper for various repre-
sentations of the phoneme; not be confused with the features extracted
from thewaveform such as MFCC, PLP.



of individual phonemes that are embedded in logatomes,
specifically, CVC and VCV sequences. Several intrinsic
variabilities in speech are represented in OLLO, by record-
ing from 40 speakers from four German dialect regions,
and by covering three speaker-dependent variabilities:
gender, age and dialect, and six speaker-independent
variabilities.

Speech features might be seen in three levels: the
discrete phonological representation of an utterance, the
acoustic pattern that results from the utterance, and the ar-
ticulatory gestures that create the links between the phono-
logical and acoustic representations. Our phonological rep-
resentation is constrained to remain on the phoneme level.
In the first round we have specified the following features:

• Ph.left: the left context,Ph.left ∈ {1, ..., L}, where
L is number of phonemes.

• Ph.right: the right context,Ph.right ∈ {1, ..., L},
whereL is number of phonemes.

• Ph.part: the phoneme’s part, Ph.part ∈
{onset, coda, onset − coda}; it specifies the
failures of recognition of that part.

• Ph.duration: the duration of the phoneme.

For the acoustic representation we have selected two
measures:

• Ph.AS norm: The acoustic score at each frame within
the decoded phoneme, normalized by the acoustic
score get from Viterbi alignment. The standard acous-
tic normalization scheme suggested is the Bayes’ rule:

P (ph|A) =
P (ph) × P (A|ph)

P (A)
. (1)

But for the purposes of determining acoustic relation-
ship between decoded and referenced recognition, we
use similar measurement:

Ph.AS norm =
P (A|ph)
P (A)FA

, (2)

whereP (A)FA is the acoustic score of aligned speech
segment got from Viterbi alignment (see detection of
incorrect recognition in Sec. 3.1). Because we have
not used any grammar,P (ph) = 1.

• Ph.NAQ: The calculation of Normalized Amplitude
Quotient (NAQ) [10]. This was used for voice qual-
ity representation, as it has been found to be very ro-
bust parameterization of the glottal flow. Our previous
work on speech variabilities also has found this rep-
resentation useful for assigning emotional aspects to
each of speech variability [11]. The amplitude quo-
tient AQ is computed asAQ = fAC/dpeak, where
fAC denotes AC flow, the part of the glottal flow
that varies in time, anddpeak denotes negative peak

amplitude of the differential flow. The AQ quanti-
fies the closing phase of the glottal flow, and it re-
flects changes that occur in the glottal source when
vocal intensity or phonation type is altered [10]. The
above time-length measure is further normalized with
respect to the length of the pitch period:

NAQ = AQ/T, (3)

whereT denotes the length of a pitch period.

We look at the phoneme features as at the sources of
information, which could reveal possible causes of wrong
recognition. From this point of view it is necessary to select
such features, which are relevantly related to the possible
improvements of speech recognition. Otherwise the result
of the diagnostics would be useless. The above selected
measures are more or less intuitive. Many researchers be-
lieve, that context and coarticulation are what make speech
recognition difficult [12] (measuresPh.left andPh.right).
The measurePh.part is used to reveal the affected parts
of recognized phonemes, leading us to a specification of
affected HMM states in trained acoustic models. The mea-
sure of phoneme durationPh.Dur captures bad modeling
of duration. The acoustic measurePh.AS norm is zero, if
there is no difference between reference and hypothesized
HMM state sequence. For erroneous regions it is posi-
tive if the acoustic score of a hypothesized sequence is less
than the one of its reference sequence. The second acoustic
measurePh.NAQ characterizes the vocal quality, or laryn-
geal phonation style of the recognized phoneme, and incor-
porates the information from speech production as possible
cause of error in speech recognition.

We have also experimented with the articulatory de-
scriptors of the phonemes. We used Withgott and Chen’s
phonological descriptors [13] of dimension 25 for that pur-
pose. Even though it was found that the Hamming distance
between these phonological descriptors are powerful if it is
used e.g. as phone confidence annotators [7], it cannot be
used as such. During tree building, this phonological dis-
tance is predominantly selected by a training process as the
most significant factor. This is due to the fact, that the dis-
tribution of that distance is exactly the same as the distribu-
tion of the incorrect decodings. We have therefore excluded
this measure from further processing. We applied the same
conclusion for the number of occurrences of a phoneme in
the acoustic training data.

3 Building PDTs

3.1 Used ASR system

Hidden Markov Models (HMM) and Gaussian Mixture
Models (GMM) based speech recognition system is trained
using public domain machine-learning library TORCH
[14] on the NO-accent training part of the OLLO train-
ing set that consists of 13446 logatome utterances. Three
states left-right HMM models were trained for each of the



26 phonemes in the OLLO database including silence as
well. Gaussian mixture models with 17 Gaussians per state
and diagonal covariance matrices were used to model the
emission probability densities of the 39 dimensional fea-
ture vectors (13 MFCC + 13 deltas + 13 accelerations). The
phoneme HMMs are connected with no skip followed by
decoding. We extended the TORCH library in a package of
calculation and storage of feature data, necessary for fur-
ther statistic processing. The decoder collects the feature
data by running on the NO-accent testing part of the OLLO
database that consists of 13466 logatome utterances. Aver-
age phoneme recognition performance of the ASR system
on this task was 76.06 % (the lowest accuracy had recogni-
tion of fast speech: 71.94 %, and the highest accuracy had
speech with statement style: 80.48 %).

Detection of wrong recognition is done by a compar-
ison of the phonetic sequence produced by the recognizer
against the expected sequence. But in addition, the time
boundaries of the phonemes are taken into account, and the
correctly decoded phoneme with bad duration is consid-
ered as wrong decoding. Frame tolerance of two frames
is allowed for detection of that bad duration. Expected se-
quence is acquired by Viterbi forced alignment. At the end
of the Viterbi computation for the last frame of the utter-
ance the aligner stores the phone assignments to frames,
along with the actual scores associated with each segmen-
tation. This acoustic score is later used as a normaliza-
tion factorP (A)FA in Eq. 1. Having expected sequence
and phoneme-aligned decoded sequence, we defined wrong
recognition as described above.

Our diagnostics is based on decision trees. We split
the feature dataD into three groups: 50 % of the data
as a training setDATATRAIN , 25 % of data as a test
dataDATATEST for testing during stepwise tree build-
ing, and 25 % of the dataT for testing of that trained tree.
During testing of the trees we calculate the misclassifica-
tion rate of the built trees on the test dataT . The misclas-
sification rates of the trees varied in the range 60-90 %.

3.2 Training

Decision trees describe how a given input can correspond to
specific outputs, as a function of some factors. At each non-
terminal node, there is a question requiring a binary an-
swer about the value of the factor associated with the node.
Terminal nodes, or leaves, are associated with a specific
output. Such decision trees can be automatically obtained
by classification and regression (CART) training technique
[15], which automatically allows the most significant fac-
tor to be statistically selected using a greedy algorithm.
In order to build a tree, one needs a training set of sam-
plesDATATRAIN = {(p1, c1, �x1), ..., (pN , cN , �xN )},
wherepn ∈ {1, ..., L} are phonemes that should be rec-
ognized, cn ∈ {1, ..., L} are classes (tree outputs, in
our case the incorrect recognized phonemes), and�xn =
(xn

1 , xn
2 , ..., xn

M ) are callculated feature vectors for that
cases, each with a total ofM feature measurements. Each

learning sample denotes a single incorrect recognition. A
training technique of CART is used to produceL deci-
sion trees, which we further call phoneme diagnostic trees
(PDTs).

We build PDTs in a stepwise fashion using the
wagon tool of the Edinburgh Speech Library with options
’-stepwise -test DATATEST -stop 4’. In this
case instead of considering all features in building the best
tree, we incrementally build trees looking for which indi-
vidual feature best increases the accuracy of the built tree
on the provided test dataDATATEST . Unlike within
the tree building process where we are looking for the best
question over all features, this technique puts a limit on
which features remain available. It first builds a tree using
each of the features provided, looking for which individ-
ual feature provides the best tree. The selecting that fea-
ture is buildsM − 1 trees with the best feature from the
first round with each of the remaining features. This pro-
cess continues until no more features add to the accuracy or
some stopping criteria is reached. We used stopping criteria
of minimal 4 samples (phonemes) per terminal node. This
stepwise technique is also a greedy technique but it was
found that when many features are presented, especially
when some are highly correlated with each other, stepwise
building produces a significantly more robust tree on exter-
nal test data. It also typically builds smaller trees.

During three building, the following impurity mea-
sure3 was used. Let us definet as a node of tree. Because
we build PDTs only for classification/prediction of wrong
phoneme recognition (with categorical values consisted of
names of incorrect recognized phomenes), the impurityi(t)
for the nodet is calculated as:

icat(t) = −
∑

c∈L

P (c|t) × log2 P (c|t), (4)

wherep(c|t) is the probability of the classc in the nodet.

4 Results on Using PDTs

In order to have statistically significant data, we merged all
data collected by decoder for all variabilities. The training
procedure described in the previous section 3.2 results in
26 decision trees (26 is the number of used phonemes in
OLLO database). Each PDT has in each of its leaves again
exactly 26 phonemes, with assigned probability of the spe-
cific incorrect recognition. We can observe two mutually
dependent informations:

• Selected features: The CART training procedure se-
lects statistically significant features, which best de-
scribe the relation of a reference phoneme and the de-
coded phonemes.

3Impurity of a set of samples is designed to capture how similar the
samples are to each other. The smaller the number the less impure the
sample set is.



Figure 1. Relative feature rate used in PDTs, split in accor-
dance with vowel/consonant categorization .

Figure 2. Relative feature rate used in PDTs of consonants,
split in accordance with the manner of articulation. The
part of Ph.NAQ andPh.Dur is shared between nasals and
fricatives.

• Distribution of incorrect decodings: Analyzing the
leaves of the PDTs, one can see the most probable in-
correct decodings given the selected questions about
the features in the nodes leading to the analyzed leave.

As an example of possible outcome from the diag-
nostics, we did the following evaluation. Having 26 trained
PDTs (one for each phoneme), we grouped them with re-
spect to (a) vowels and consonants, and (b) with respect to
splitting the consonants according to their manner of artic-
ulation. Going over the PDTs, we found features in ques-
tions, and calculated their relative rate of selection by the
training process. Figure 1 refers to the (a) case and Figure
2 to the (b) case respectively. For both vowels and conso-
nants, the distribution of selected features is almost identi-
cal. Only for consonants the context plays more important
role than for vowels. The different picture is found when
we are closely looking at consonants. The most important
cause of errors for plosives is the plosive’s context. For
nasals the vocal quality featurePh.NAQ is significant, and
for fricatives, the duration of recognized phoneme.

An example of trained PDT for the phoneme /g/ is
shown at Fig. 3. At each non-terminal node, there is a
question requiring a yes (right) or no (left) answer about

Variability Part Left Right Dur AS NAQ

Fast x x
Slow x x
Loud x x
Quiet x
Quest. style x x x
Normal style x

Table 1. Chief features selected for classification of ASR
failures during decoding of phoneme /o/

the value of the selected feature. Terminal nodes, or leaves,
are associated with a specific set of probabilities for each of
26 phonemes. For the presentation purpose, only the first
three most significant probabilities are depicted.

4.1 Impact of Speech Variabilities

One of the most important aims of the DIVINES project is
to understand an impact of intrinsic speech variabilities on
speech recognition. Here, we show an example how PDTs
can be used to this aim. Now, the training set has to be split
in to 6 parts, each representing one of the six different artic-
ulation characteristics recorded in OLLO database. These
characteristics include:

• speaking rate: fast, slow, normal

• speaking effort: loud, quiet, normal

• speaking style: question or statement

Due to the necessity of large amount of data for statistical
training, we have selected as next example the phoneme
/o/ for which the decoder collected the most data. This
phoneme belongs to the worst decoded phonemes, where
almost every third decoding of /o/ was incorrect because of
its substitution with the phoneme /u/.

We constructed six PDTs, one for each variability,
and looked at the main features selected by CART train-
ing. This information is shown in table 1.

The most significant features for fast speech is con-
text, when the reason might be that faster speech rate may
lead to more frequent and stronger pronunciation changes
[2]. On the contrary, causes of errors for slow speech seem
to be in bad modeling of duration and weaker discrimina-
tion of acoustic models. Loud speech shows the importance
of Normalized amplitude quotient, because the speaking ef-
fort is changed here. Finally, for question style the context
together with duration are the most significant, and for nor-
mal speech the only possible cause of incorrect decoding of
/o/ has been found in less discriminant acoustic modeling
against acoustic models of the phoneme /u/.



Figure 3. Decision tree of phoneme /g/. The most significant diagnostic results on the right is the misrecognition (a) of /g/ as
/k/, if silence follows /g/ - the whole /g/ is misrecognized, (b) of /g/ as /d/, if /a/ follows /g/ - again the whole /g/ is affected.
Looking on the left of the tree, we see an interesting impact of vowels /U/ and /I/ followed by /g/. Here the part of /g/ is decoded
as /U/ or /I/ respectively. Concluding the selected main features all together, the right context of the consonant /g/ plays the most
significant role in its incorrect recognition, and must be better modeled in situations, which were revealed by the diagnostic
tree.



5 Conclusion

The technique of PDTs provides understanding about
causes of error for individual phonemes. We believe that
it is reasonable, while there are some clues in the literature,
which shows that humans decode syllables as independent
phone units over time [12, 16]. H. Fletcher and recently
J.B. Allen defined the articulation score, a term of human
speech perceptual concept, as the probability of identifying
nonsense speech sounds. This definition is in fact also the
definition of accuracy in machine speech recognition. We
believe that using results of PDTs, using simple compar-
ision as stated above, one can make positive contribution
to the man-machine comparison. It is therefore worth to
study failures of individual phonemes in details, instead of
averaging recognition results over some generalized cate-
gories. Human speech recognition is for real life applica-
tions much more robust than computer speech recognition.
Precise diagnostics of computer speech recognition for a
given experiment may improve understanding of failures,
which may further suggests modifications for next experi-
ments, converging to the human performance.

During the training of PDTs using CART technique
we have found its high sensitivity to the settings of train-
ing parameters. In our work we excluded the data sets with
too few examples, and we also excluded trained trees with
too high misrecognition rate achieved over the test data set.
Moreover we used a stepwise building method, which pro-
duces significantly more robust trees. However, we still see
room here for next improvements of the tree building pro-
cess.

Motivated by [8], in the future we would like to ex-
tend current feature set. The advantage of this diagnostics
is, that at the end of training we get a set of significant fea-
tures, but also the rest is interesting - which features are
not significant. We can simply add also more experimental
features, almost everything what can be measured and has
a meaning towards the reaching limits of machine speech
recognizers.
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