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06904 Sophia Antipolis Cedex, FRANCE

ftrigui,slockg@eurecom.fr

Abstract

In wireless communications, spatial (via antenna arrays)
and temporal (excess bandwidth) diversity may be exploited
to simultaneously equalize a user of interest while canceling
or reducing (cochannel) interfering users. This can be done
using the Interference Canceling Matched Filter (ICMF)
which we introduced previously. The ICMF depends on
the channel for the user of interest, to be estimated with
a training sequence, and a blind interference cancellation
part. The critical part is the channel estimation. The usual
least-squares method may lead to poor estimates in high
interference environments. Significant improvements may
result from the Maximum-Likelihood (ML) and suboptimal
techniques investigated here.

1. Problem Formulation

We consider here linear digital modulation over a lin-
ear channel with additive noise. We consider furthermore
a FIR multichannel model. The multiple FIR channels are
due to oversampling of a single received signal and/or the
availability of multiple received signals from an array of
antennas (in the context of mobile digital communications)
[1]. A third possibility for having multiple channels is when
one-dimensional constellations (e.g. BPSK) are transmitted
with modulation [2]. In that case, the channel impulse re-
sponse and the received signal in baseband will be com-
plex. The real and the imaginary parts of the channel (and
the received signal) can be considered as two real channels
through which the real symbols are received.

To further develop the case of oversampling, the cyclo-
stationary received signal can be written as

y(t) =
X
k

h(t� kT )a(k) + v(t) (1)

where the a(k) are the transmitted symbols, T is the sym-
bol period and h(t) is the channel impulse response. The
channel is assumed to be FIR with duration NT (approxi-
mately). If the received signal is oversampled at the rate m

T

(or if m different received signals are captured by m sen-
sors every T seconds, or a combination of both), the discrete
input-output relationship can be written as:

y(k) =
N�1X
i=0

h(i)a(k�i) + v(k) = HAN (k) + vk ;
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H=[h(N�1) � � �h(0)] ; AN (k)=
�
aH(k�N+1) � � �aH(k)

�H
(2)

where the subscript i denotes the ith channel and super-
script H denotes Hermitian transpose. In the case of over-
sampling, yi(k) ; i=1; : : : ;m represent the m phases of the
polyphase representation of the oversampled signal: yi(k)=
y(t0+(k+

i
m
)T ). In this representation, we get a discrete-

time circuit in which the sampling rate is the symbol rate.
Its output is a vector signal corresponding to a SIMO (Sin-
gle Input Multiple Output) or vector channel consisting of
m SISO discrete-time channels where m is the sum of the
oversampling factors used for the possibly multiple antenna

signals. Let H(z) =
N�1X
i=0

h(i)z�i= [HH
1 (z) � � �HH

m(z)]H

be the SIMO channel transfer function. Assume we re-
ceive M samples: YM (k)=TM(H)AM+N�1(k)+V M (k)
where YM (k)=[yH (k�M+1) � � �yH (k)]H and similarly
for V M (k), and TM (H) is a block Toeplitz matrix with M
block rows and [H 0m�(M�1)] as first block row. We shall
simplify the notation with k=M�1 to

Y = T (H)A + V : (3)

The term v(k) will be considered here to consist of



both spatially and temporally correlated additive zero mean
noise. In simulations, we often assume v(k) to consist of
temporally and spatially i.i.d. noise plus co-channel multi-
user interference. This would mean that the additive noise
v(t) is a combination of stationary and cyclostationary com-
ponents with period T . When the noise consists of mul-
tiuser interference plus Gaussian noise, the optimal receiver
performs joint detection of all users. However, the estima-
tion of the matrix transfer function from all users to all an-
tennas (and/or sampling phases) is a formidable and often
prohibitive task. Furthermore, the complexity of MLSE can
be enormous in this case. Therefore we shall concentrate
on the detection of one user of interest, ignore the discrete
distribution of the interferers and approximate them with
a Gaussian distribution. We shall assume that the channel
transfer functions for the interferers are also FIR and that
their symbol sequences are uncorrelated. Hence we assume
that v(k) is a multivariate MA(N

0

�1) process.

In the blind estimation problem on the basis of a burst
of received data as in (3), the unknown parameters are the
channel H, the transmitted symbols A and the noise cor-
relation sequence rvv(0 : N

0

�1). However, this ensem-
ble of unknown parameters is unidentifiable from the re-
ceived data Y . A training sequence, i.e. a subset of known
transmitted symbols A1, has to be available to enable es-
timation of all unknown parameters. In [3], which builds
upon previous work as discussed in [3], a two-step proce-
dure was proposed in which the training sequence was used
to estimate the channel H via least-squares (as is usually
done for training-sequence based channel estimation). A
set of parameters equivalent to rvv(0 :N

0

�1) in a filtering
structure called the Interference Canceling Matched Filter
(ICMF) was then estimated blindly. The remaining sym-
bols A2 can then be estimated using any of the existing
receiver techniques that are based on known channel and
noise statistics. The least-squares criterion for the channel
identification used in [3] is optimal when the additive noise
is white. When the noise is colored and furthermore con-
tains multi-user interference, the channel estimate obtained
by least-squares may not be good enough. We furthermore
wish to consider also situations in which the training se-
quence length is long enough for identifiability but not long
enough to permit a good quality channel estimate via least-
squares. In this paper we propose two solutions of increas-
ing complexity to obtain better channel estimates. In the
first solution we estimate the channel from the training se-
quence via an optimal weighted least-squares criterion. The
other solution involves again a weighted least-squares cri-
terion, but with modified input and desired-response sig-
nals. We also consider the ML approach and investigate the
Cramer-Rao performance bounds.

2. Gaussian Maximum Likelihood

We assume for the received signal Y = T (H)A+V
that V �N (0; RV V ) and independent of A�N (Ao;CAA)
(complex normal variables are assumed to be circular). Ao

is the mean for the symbols A and CAA their covariance
matrix.

Let A= P
�
AoH1 AH2

�H
where Ao1 are the training sym-

bols and P is a permutation matrix to account for the fact
that the training sequence does not necessarily occur at the
beginning. Hence we have

Ao = P

�
Ao1
0

�
; CAA = P

�
0 0
0 RA2A2

�
PH (4)

One obvious choice for RA2A2 would be RA2A2 = �2aI.
We also introduce the following notation

T A = T1A1 + T2A2 = T1A
o
1 + T2A2: (5)

We get for the correlation and covariance matrices

CYY = T2RA2A2T
H
2 +RV V = RY Y �(T1A

o
1) (T1A

o
1)
H

:

(6)
We derive now the stochastic (or Gaussian) maximum

likelihood approach (GML) as it is introduced in [4]. With
the previous notation, we consider the received signal Y =
T (H)A + V : Y � N (T1(H)Ao1; CY Y ) and we shall
maximize the complex probability density function (pdf)

f(Y j�)=
exp

�
�(Y�T1(H)Ao1)

HC�1
YY (Y�T1(H)Ao1)

�
�mMdetCYY

(7)

with � =
h
vecH (H)triH (rvv(0))vecH (rvv(1 :N

0

�1)
iH

where the notation vec(B) denotes a vector formed by
stacking the columns of B and tri(B) denotes a vector
formed by stacking the lower triangular part ofB. If at least
one interferer has an impulse response channel with the
same length (or longer) than the user of interest (i.eN

0

�N ),
then a more robust parameterization should be introduced.
Thus, we can minimize the negative log-likelihood function

F(Y j�)=(Y�T1(H)Ao1)
H ( �RYY��2aT1(H)T1(H)H )�1

(Y�T1(H)Ao1)+ln(det( �RY Y��2aT1(H)T1(H)H))
(8)

w.r.t. �=
h
vecH (H)triH(�ryy(0))vecH (�ryy(1 :N

0

�1)
iH

where �RYY =EAo1RYY =�2aT T
H+RV V which is banded

block Toeplitz (removing now conditioning on Ao
1 and as-

suming RAo1A
o
1
= �2aI and Ao1 independent of the rest,

and RA2A2 = �2aI). Such a parameterization is justi-
fied by the fact that the estimation of H or RVV is not
consistent. However, the estimation of �RYY is consis-
tent. Moreover, we can neglect (asymptotically) the esti-
mation errors if the burst is sufficiently long and suppose



that �RYY is known. We consider in this paper only the
case where N

0

= N which is of practical interest. We
should emphasize the fact that only the number of the un-
known symbols can be (asymptotically) infinite; the length
of the training sequence is necessarily finite. The complex
Fisher Information Matrix (FIM) can be defined as J�� =

�EY @
@��

�
@F(Y j�)

@��

�H
where �=

�
�H�T

�H
=
�
hH'H

�H
and h =

h
h
H(0) � � �hH (N�1)

iH
or more explicitly as

Jhh(i; j)=
�
HHC�1

YYH
�
(i;j)

+tr
�
C�1
YY

�
@CYY
@h�

i

�
C�1
YY

�
@CYY
@h�

j

�H�
J�'(i; j) = tr

�
@CYY
@��

i

C�1
YY

�
@CYY
@'�

j

�H
C�1
Y Y

�
(9)

where due to the commutativity of convolutionT1(H)Ao1 =
H(Ao1)h = Hh.

The Cramer-Rao Bound is the lower bound to the error
covariance matrix of any unbiased estimator and is given by
the inverse of the FIM (which is regular in our case for only
one known symbol).

By considering some permutation matrix to push the
training sequence at the begining of the burst and applying
the partitioned matrix inversion lemma on the matrix CYY ,
one can see that the additional blind information disappears
when the length of the burst tends to infinity. Moreover, the
CRB remains unchanged for a given training sequence em-
bedded in bursts with various lengths. This shows that the
whole information is concentrated around the training se-
quence part. Although the complex FIM is regular for only
one known symbol, we can not apply a reasoning similar to
[5] and refer to our problem as a Semi-Blind one. There is
no blind method that allows estimation of the channel of the
user of interest in the presence of arbitrary colored noise as
considered here. In [6], the special case of a spatially cor-
related but temporally white noise is considered in which
case blind identification can be possible. Another compli-
cation is the following. To be able to obtain a positive mS

by mS block Toeplitz �̂RYY , by pre and post windowing,
one can check easily that the burst should be longer than
(m � 1)S + 1. In the multichannel case, we can only es-
timate structured matrices with smaller size than the burst
length to garantee the positive definiteness of �̂RY Y .

3. Optimally Weighted Least-Squares

To calculate the GML estimates, we can consider a New-
ton type algorithm to minimize (8). Since the computational
cost can be large, we are interested here in

min
H

kY � T1A
o
1k

2
C
�1
Y Y

: (10)

At this point, it is useful to consider the following facts 8� o

argmin
�
kZ�X�k2[R�X�o�Ho XH ]�1 =argmin

�
kZ�X�k2R�1 ;

min
�
kZ�X�k2[R�X�o�Ho XH ]�1 =min

�
kZ�X�k2R�1 :(11)

This means that we can replace the problem in (10) by

min
H

kY � T1A
o
1k

2
R�1
Y Y

: (12)

At this point we still have a complicated optimization
problem since RYY = RYY (H). We can approx-
imate the problem in (12) with a simplified problem
min
H

kY � T1A
o
1k

2
�̂R
�1

Y Y

in which �̂RY Y is a banded block

Toeplitz estimate, obtained from Y Y H , of �RYY .
Compared to the original unweighted least-squares ap-

proach, (10) with CY Y fixed at the true value represents the
optimally weighted least-squares criterion. A more exact
solution to the problem (12) would be the following itera-
tive solution

min
H(i)

Y �T1(H (i))Ao1

2�
�̂RY Y��2aT1(H

(i�1)
)T H

1 (H (i�1)
)
��1

(13)
withH (�1) = 0.

4. Wiener Filtering

We propose now another sub-optimal training sequence
based approach that we call Wiener Filtering (WF). It uses
the fact that the MMSE linear receiver, the Wiener filter, has
�2aHy(z )S�1

yy(z ) as transfer function. A LS problem with
all the known symbols as desired response can be formu-
lated to estimate the matched filter. As a second step we can
improve this estimation by an iterative optimally weighted
LS by taking into account the covariance matrix of the er-
rors (can be estimated).

4.1. Infinite Length Wiener Filtering

The difficulty here is how to approximate the IIR filter
S�1
yy(z ) by a FIR one. This problem is discussed in [3]

where a finite number of correlation lags of yk are used to
determine the FIR prediction filter P (z ) producing the pre-
diction error fk = P (z )yk and leading to the FIR model
S�1
yy(z ) = P y(z )��2

f
P (z ) where the m by m matrix �2

f
denotes the prediction error variance. With this AR approx-
imation we focus on the information around the training
sequence (assumed to be far from the burst edges) which
makes sense as argued before.

If the prediction order is L and the training se-
quence contains K symbols, then we need only
a portion of length K+2L+N�1 of the burst.



Let’s express the portion of interest at instant k by
Y K+2L+N�1(k) = ~PY M (k), where ~P is a selection ma-
trix. We introduce now the filtered version of the received
signal by ~yk = S�1

yy(z ) yk = P y(z )��2

f
P (z ) yk or

more conviently by a vectorial notation ~YK+N�1(k) =

TK+N�1(P
y)
�
IK+L+N�1
�

�2

f

�
TK+L+N�1(P )YK+2L+N�1(k):

where 
 is the Kronecker product operator,
P = [p(L :�1 :1) Im] the matrix of prediction coef-

ficients and ~Y K+N�1(k) =
�
~yHk � � � ~y

H
k+K+N�2

�H
. The

subscripts are omitted in the following for simplicity of
notation.

Formulate first the LS problem as a minimization w.r.t.
the channel coefficients of

KX
j=1

n2j =
KX
j=1

jaj��
2
ah

H ~Yj j
2 =

Ao1��2aT (hH ) ~Y
2
(14)

where ~Yj =
�
~yHk+j�1 � � � ~y

H
k+j+N�2

�H
. This leads to the

filter �2aĥ = (
KX
j=1

~Yj ~Y
H
j )�1

KX
j=1

~Yja
�
j . By exploiting the

fact that we use only a part of the received burst and ob-
serving that N = Ao

1��
2
aT (hH) ~Y = Ao1��

2
aY

Th� con-
sists of a mean part and a perturbation around it, the op-
timally weighted LS problem corresponding to (14)can be

shown to be min
h

Ao1��2aT (hH) ~Y
2
R��1
NN

where RNN =

QAo1A
o
1
HQH+SCYY S

H , and

Q=IK��2aT (hH )T (P y)
�
IK+L+N
�

�2

f

�
T (P )~PT1(H)

S = �2aT (hH )T (P y)
�
IK+L+N 
 ��2

f

�
T (P ) ~P:

(15)
The solution to the Wiener filtering prob-

lem can be extended to a GML minimization of
the negative log-likelihood function F( ~Y j�) =
NHR��1

NNN+ln(det(RNN )) w.r.t �. By using the

fact that
�
SCY Y S

H
��1

QAo1A
oH
1 QH � I and

ln(det(I + �)) � tr(�) for small �, we can extract
some information from the determinant (and neglect the
information in det(SCYY S

H)) and get an approximated
GML estimate

ĥ=
�
�4aYR

�1
NNY

H+HHSH (SCYY S
H)�1SH

��1

�
HHSH(SCYY S

H )�1Ao1+�
2
aYR

�1
NNA

o�
1

�
(16)

4.2. FIR Wiener Filtering

To avoid the FIR approximations of the previous ap-
proach, we consider here the FIR Wiener Filter. As before,

the LS problem boils, for d� 0, down to the minimisation
w.r.t the channel coefficients of

KX
k=1

jak��
2
a

�
01;m(d+N�1)h

H01;m(d�N+1)

�
R�1
YN+2dYN+2d

YN+2d(k +N � d� 1)j2:
(17)

Though FIR approximations are avoided here, the MMSE
and hence the estimation variance are slightly higher when
d is finite.

5. Wiener Filtering at the ICMF output

If the ICMF is followed by a MMSE linear equalizer,
a WF problem can be formulated at its output. The train-
ing sequence channel identification is done here as the first
step. Since this structure allows only to identify g(z ) =

Ĥ
y
(z )H(z ), we only have information on a 2N � 1 dimen-

sional subset of the mN parameters. We can not identify
the component of H(z ) contained in the left null space of
TN (Ĥ).
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Figure 1. Expanded ICMF (EICMF)
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Figure 3. WF solution at the EICMF output

This problem appears also in the classical WF: we have
a linear system of K equations and mN parameters. In the
case of mN > K, we shall consider a combination of cost
functions, each for a subset of channels. The combination
of cost functions, weighted inversely proportionally to their
respective MMSE’s, should be minimized in one operation.

For the ICMF, we can create diversity by considering
m scalar matched filters, one for each phase; the block-
ing equalizers H?(z ) ([7] and references therein) remains
unchanged. However, a Wiener filter should be considered
separately for each phase (see figure 1). The resulting ICMF



is termed Expanded ICMF (EICMF). Thus, the number of
equations becomes proportional to the number of channels:
LS (figure 2) leads to m(K � 2N + 2) equations while WF
(figure 3) leads to mK equations if m > 2 and K equa-
tions if m = 2. The price paid for this additional diversity
is the complexity of the receiver (in the interference cancel-
lation part) since we pass for W (z ) from a vectorial filter to
a matricial one.

6. Simulation Results

We consider two 5-tap random channel impulse re-
sponses for the user of interest and the interferer. The 4-
QAM signals, assumed to be independent for the two users,
are received by three antennas. The performance of the dif-
ferent algorithms are presented in figure 4 and compared to
the Cramer-Rao Bound (for the ease of known �RYY ) by av-
eraging 50 realisations. The training sequence of length 26
is taken in the middle of a 148 symbol burst length (as in
GSM). We show the root normalized mean square error vs.
SNR for SIR=10dB. WLS refers to (10). WF refers to (14)
with prediction quantities estimated from a burst of 480,
while EWF is with exact prediction. WWF corresponds to
(16) with estimated prediction and EWWF with exact pre-
diction.

7. Conclusions

The limited performance of the optimally WLS is shown.
Even so, this performance is not realisable in practise since
it requires the exact CYY . The practical approximation pre-
sented in (13) does not work well because it is difficult to
guarantee ĈY Y > 0. Direct minimisation of (8) is very
complex and shows similar difficulties. The WLS takes the
information of the mean and doesn’t consider the informa-
tion of the covariance matrix. Its performance is far from
the CRB. However, the WF approach is simple and can per-
form in the severe scenario (low SNRs and moderate SIR)
as well as the WLS. If we use true correlation matrix �RYY ,
the performance of WF will be very near the CRB which
indicates that the proper estimation of �RYY is the key prob-
lem of this approach. The approximated GML criterion in
(16) improves the performance of WF to some extent. The
performance of training sequence LS or WF approaches at
the EICMF output will be evaluated in a separate paper. It
is expected to be good since the SINR at the EICMF output
is maximized
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