
Institut Eurécom
Department of Corporate Communications

2229, route des Crètes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-05-147
On the Impact of Applications on TCP Transfers

10th October 2005

M. Siekkinen, G. Urvoy-Keller, E. W. Biersack

Tel : (+33) 4 93 00 26 26
Fax : (+33) 4 93 00 26 27

Email : {siekkine,urvoy,erbi}@eurecom.fr

1Institut Eurécom’s research is partially supported by its industrial members: Bouygues
Téécom,Fondation d’entreprise Groupe Cegetel, Fondation Hasler, France Télécom, Hitachi, ST
Microelectronics, Swisscom, Texas Instruments, Thales

1

Abstract

TCP is estimated to carry over 90% of the bytes in the Internet. Consequently, the
research on TCP traffic analysis continues to be very active. When studying TCP
traffic with the objective to learn about the underlying TCP/IP path properties, the
effects of the application operating on top should be accounted for. This problem is
often neglegted or solved only for particular cases. In this paper we focus on solv-
ing the problem for the general case, i.e. for TCP traffic generated by any type of
application. The problem is hard because an application may interfere a TCP trans-
fer on a combination of several different time scales, e.g. in the form of rate limited
transfers or connections which are transferring only periodically and kept alive at
other times. We argue that meaningful analysis on the network characteristics can
be performed only by concentrating on TCP traffic that experiences minimal inter-
ference by the application. We call these traffic bulk data transfer periods (BTP)
of a connection. We define the other traffic as application limited periods (ALP)
where TCP is not fully utilizing the network resources because the application does
not produce data fast enough. As an example, consider the problem of estimating
the available bandwidth of a given path by observing the throughput of a TCP con-
nection. Analysis including ALPs may give false estimates while BTPs convey
correct information about the path. We present a generic algorithm that isolates
BTPs from ALPs within a TCP connection and allows to quantitatively analyze
the impact of the application on the TCP throughput achieved. The algorithm is
validated by crosschecking the results with TCP state data extracted directly from
an operating system kernel. We apply our algorithm to traffic of several particular
applications extracted from public Internet traces. We show that different types of
applications exhibit significantly different characteristics when studying the prop-
erties of their BTPs.

2

1 Introduction

The set of applications dominating the Internet has changed over the last couple
of years from HTTP and FTP to peer to peer (P2P) applications. However, TCP is
still transporting the majority of bytes, typically over 90%. Traffic volumes have
also dramatically increased since the emergence of P2P. As a consequence, the
analysis of the TCP protocol and TCP traffic is even more vital than before.

Much research have been done to detect anomalies and to characterize TCP
traffic in the Internet. This analysis work usually focuses on the TCP and IP layers,
but often fails to take into account the effects of the application on top. When
seeking to explain certain characteristics, e.g. burstiness of TCP traffic [5] [9],
it is crucial to quarantine the effects of the application before making statements
concerning the TCP protocol or the TCP/IP data path.

The operational performance of an Internet application depends on several as-
pects. On one hand the data path, through TCP and IP layers, has a major influence
on the throughput achieved, which is typically the most important performance
measure. On the other hand, it is important to understand to which extent the ap-
plication itself influences the throughput. Only with this information can a given
data path be meaningfully studied and the performance of different Internet appli-
cations be characterized.

1.1 Our Contribution

We consider in this paper the problem of identifying bulk data transfer peri-
ods (BTP) within a TCP connection. We define a BTP as a period where the TCP
sender never needs to wait for the application on top to provide data to transfer.
Other time periods are defined as application limited periods (ALP). We present an
algorithm to identify BTPs within a TCP connection, which is generic in the sense
that it works regardless of the type of application on top of TCP. Furthermore,
the algorithm enables a quantitative evaluation of the impact of the application on
the throughput achieved for a given BTP. The algorithm processes bidirectional
TCP/IP headers passively collected at a single measurement point. It may not al-
ways be possible to capture the traffic in both directions, e.g. in the backbone where
connections may have asymmetric upstream and downstream paths [7]. Never-
theless, we argue that unidirectional traces are often not sufficient for in-depth
analysis, as is the case for the round-trip time (RTT) estimation, for instance. The
algorithm is validated by cross-checking its results with accurate TCP state data
obtained from the operating system kernel.

We apply the algorithm to a variety of traces each of which contains traffic
generated by a single application. Each trace is extracted from the same public
set of traffic traces of an ADSL access network [1]. We show that the different
applications have a very different impact on the underlying flow of TCP packets.
We also demonstrate for the case of the RTT estimation the importance of isolating
the BTPs when studying properties of a given TCP/IP path.

3

1.2 Related Work

Overall, the related work has mainly focused on either not addressing the prob-
lem at all or solving it for a specific case, such as for traffic of a particular appli-
cation. The author in [13] suggests a method to investigate the stationarity of TCP
transfers. The transfers were isolated from BitTorrent connections by excluding
choked periods [6] that were identified as periods of at least 15 seconds where less
than 15 kbytes of data are sent. This heuristic works well for BitTorrent traffic but
can not be generalized to other applications.

In [3] the authors recommend to carefully choose the application when evalu-
ating TCP performance.

Pioneering research work on TCP root cause analysis was done by Zhang et al.
in [15] where they identify application limitation as one of the possible causes for
achieving a given throughput. Our work differs from theirs by providing a method
to isolate the bulk data transfers for any further analysis and to evaluate the effect
of the application in a quantitative way. Additionally, we extend their definition of
application limitation.

In a previous work [12] we have presented a more simple algorithm based on
computing a time series with a fixed time window that was specifically designed to
analyze TCP traffic generated by BitTorrent. Consequently, it uses thresholds that
need to be calibrated for each type of traffic separately. In this paper we present a
more general solution designed to work without calibration for any type of appli-
cation.

2 The Application Impact on TCP Transfers

When the application is the root cause for the throughput achieved of a TCP
connection, TCP is unable to fully utilize the network resources because the appli-
cation does not produce data fast enough. There can be many reasons for this.

One is an application that produces small amounts of data at a relatively con-
stant rate. At the TCP layer, this results in small bursts of packets, in the extreme
case a single packet of size less than the allowed maximum segment size (MSS)
of the connection. Typical examples are (i) live streaming applications, such as
Skype [4] that transfers data over TCP at a constant rate of 32 Kbit/s (if it can
not operate over UDP), and (ii) applications that impose transmission rate lim-
its. Figure 1 shows a time vs. sequence diagram of Skype traffic. The plot was
created with tcptrace (www.tcptrace.org). The bottom line tracks the received
acknowledgments and vertical arrows sent data packets. A diamond on top of a
black arrow means that the packet was pushed by TCP. The MSS is 1460 bytes but
the size of each packet transferred is 42 bytes.

A second case is an application that produces data in bursts separated from
each other by idle periods. An example of such behavior is Web browsing with
persistent HTTP connections. The user clicks on a link to load a web page, caus-
ing a transfer period, reads the page, causing an idle period, and clicks on another

4

link on the same web site, causing another transfer period. Another example is Bit-
Torrent that uses permanent TCP connections to send blocks of data during transfer
periods and keep-alive packets during choked periods [6]. Figure 2 shows an ex-
ample of a typical BitTorrent connection that oscillates between transfer periods
(“vertical” lines) and choked periods (“horizontal” lines). The upper line tracks
the receiver advertised window. Keep alive messages, visible as plain diamonds,
are sent regularly during the choked periods.

2200

2100

2000

1900

1800

01.850001.800001.750001.700001.6500

 sequence number

 time

 Skype conversation over TCP
�

�

�

�

�

�

�

�

�

�

�

�

Figure 1: A short piece of Skype connec-
tion.

1500000

1000000

500000

0
 18:30:00 18:25:00 18:20:00 18:15:00

 sequence number

 time

�����������

������

 SYN

Figure 2: 20 minutes of a BitTorrent con-
nection.

These examples demonstrate that it is challenging to design a generic algorithm
to separate BTPs from ALPs since the application may interfere on very different
time scales. Some cases may even include combinations of both extreme cases, as
is the case of a BitTorrent connection that oscillates between choked and transfer
periods where the client application enforces a transmission rate limit during the
transfer periods.

3 The Isolate & Merge (IM) Algorithm

The IM algorithm identifies BTPs for a single direction of a connection at a
time, since a TCP connection may have two-way data transfers. It processes only
connections consisting of at least 130 data packets, because connections with fewer
packets are very likely to be dominated by the TCP slow start algorithm and there-
fore (arguably) convey little information about the TCP/IP data path for future anal-
ysis. When in slow start mode, the TCP sender needs to transmit approximately
130 data packets (assuming a MSS of 1460 bytes) in order to reach a congestion
window size equal to 64 Kbytes, the most common size of a receiver advertized
window [11]. We also define a short transfer period (STP) as a transfer period that
is not application limited and contains less than 130 data packets.

The IM algorithm consists of two phases: First, it partitions the connection into
BTPs and STPs separated by ALPs. In the second phase the algorithm attempts to
merge a BTP or STP with its adjacent BTP or STP including the ALP in between
to create a new BTP. These mergers are controlled with a parameter lim that di-
rectly relates to the decrease in the BTP throughput due to a merger. There are

5

two main reasons for the merge phase: After the isolate phase, a connection may
be divided into many BTPs and STPs separated by very short ALPs. It would be
often desirable to combine these periods into one long BTP for subsequent anal-
ysis if the effect of these short ALPs on the throughput achieved is small. Also,
experimenting with different values of the control parameter lim allows for quan-
titative analysis of the application impact on the throughput achieved as we will
show in the next section. The procedures corresponding to these two phases are
called isolate and merge.

3.1 Isolate

Algorithm 1: The isolate procedure.
define MSS(pi) = {1, if pi has size equal to MSS; 0 otherwise};
define estimate rtt(): returns a RTT estimate for the connection;
input argument th ∈ [0, 10];
rtt := estimate rtt();
is active := 0, p0 := index of first data pkt // start in inactive state
forall packets pi ∈ {sent data pkts ∪ received acks} do

if is active == 1 then
if pi is data packet then

sum := sum + 1;
if (

�
k∈{prev 10 data pkts} MSS(pk)) ≤ th ‖

(!MSS(p0) & IAT (pi−1, pi) > RTT
2

& pi not retransmission) then
if sum ≥ 130 then

store current transfer period as BTP;
else

store current transfer period as STP;
is active := 0, sum := 0 // start a new ALP

p0 := pi;
else

if MSS(pi−2) & MSS(pi−1) & MSS(pi) then
store current ALP;
is active := 1 // start a new transfer period

The isolate procedure, sketched in Algorithm 1, scans through all the packets
of a connection traversing in a given direction and continuously switches between
active and inactive states. Whenever it observes packets smaller than MSS more
frequently than a predefined threshold (th) allows (e.g. as in Figure 1) or encoun-
ters a long idle time preceded by a small data packet (e.g. as in Figure 2) it switches
to the inactive state and stores the current transfer period. If the number of pack-
ets belonging to this period is at least 130, a BTP is stored, and a STP otherwise.
When in the inactive state, all packets observed belong to an ALP until three con-
secutive packets of size MSS are seen. At this point the algorithm switches back to
the active state and stores the ALP.

6

3.1.1 Obtaining an RTT estimate

For the analysis of each connection we require a RTT estimate to provide a
suitable threshold for the idle periods (IAT > RTT

2 in Algorithm 1). We specify
the inter-arrival time (IAT) as the time delay during which no data pkts are sent and
no pure acknowledgments received – in case of a two-way data transfer there can
be piggybagged acks. We consider only the IAT s between a data packet following
a data packet or an ack. When computing IAT between data packet following an
ack, both the RTT and the location of the measurement point on the path have
an influence: IAT = (timedata − timeack) − f · RTT , where f ∈ [0, 1] is the
“distance” of the measurement point from the TCP sender on the path and can be
computed as f = d2

d1+d2
from Figures 3 and 4, for example. In other words, we

allow a maximum idle time of RTT
2 for the application. As the correct estimation

of the RTT is important for the algorithm and far from trivial, the estimate rtt()
function in the isolate procedure uses one of the four following different techniques
since none of the techniques alone can guarantee an estimate in all cases:

• the three-way handshake technique (a.k.a. SYN-ACK technique) [8]

• two way data/ack association technique as visualized in Figure 3.

• technique relying on TCP timestamps [14]

• technique relying on observing at least one Fast Retransmission [2], see Fig-
ure 4

If the RTT can not be estimated using any of the techniques, the connection is
not processed at all. This would be the case for connections not observed from the
start, that do not support TCP timestamps, transmit data purely to one direction,
and experience no loss, a very rare case as we will see in Section 5.

ReceiverSender

d1

ack

data

ack

data

d2

Measurement point

rtt=min(d1)+min(d2)

tim
e

Figure 3: Round-trip time estimation us-
ing naive data-ack association.

rtt=d1+d2

X

d2

tim
e

Sender Receiver

dup acks

ack

data

d1

data

retransmission

Measurement point

Figure 4: Round-trip time estimation us-
ing 3rd duplicate ack-retransmission as-
sociation.

7

Algorithm 2: The merge procedure.
input argument lim ∈ [0, 1];
define struct Period := {bytes, pkts, duration, n, type};
define merge(P1, P2) : returns new Period{P1.bytes + P2.bytes,

P1.pkts + P2.pkts, P1.duration + P2.duration, null, null};
initialize ∀i, ni := 1, V ol := 0, i0 := index of first STP or BTP;
initialize S := all periods identified by isolate procedure, Snew := � ;
initialize Pmerge := new Period{0, 0, 0, 1, null};
repeat

forall periods Pi ∈ S do
if Pi.type is STP or BTP then

tput transfer :=
� i

k=i0
Pk.bytes

�
i
k=i0

Pk.duration×Pk.n
, Pk.type is STP or BTP;

tput merged :=
Pmerge.bytes+Pi.bytes

Pmerge.duration+Pi.duration
;

if tput merged

tput transfer
≥ lim then

// merger allowed
Pmerge := merge(Pmerge, Pi);
Pmerge.n := tput merged

tput transfer
;

else
// merger not allowed
if Pmerge.pkts ≥ 130 then

Pmerge.type := BTP;
else

Pmerge.type := STP;
Snew := Snew ∪ {Pmerge, Pi−1} // add also the previous ALP
Pmerge := Pi, i0 := i;

else if Pi is not the first or last ALP then
Pmerge := merge(Pmerge, Pi) // merge with the interleaving

ALP
S := Snew;

until no more mergers;
store S as the final period set with lim;

3.2 Merge

The merge procedure, sketched in Algorithm 2, inspects all periods identified
by isolate and attempts to merge adjacent periods while respecting the given lim

parameter value. lim indicates the maximum tolerated level of decrease in the
throughput when merging periods to form a new longer BTP. tput merged is the
throughput of the newly formed period by merger, whereas tput transfer is the
throughput obtained when combining together only the BTPs and STPs contained
by the merged period.

Note that the throughput of a transfer, especially a long one, is not always stable
throughout its lifetime. Consider, for instance, a case where a BTP experiences
congestion that degrades its throughput and the next BTP does not. Thus, in these
cases a merger may be prevented due to different throughputs achieved by the
subsequent transfer periods, which is, in fact, desireable in many cases since they
exhibit clearly different network conditions.

The outermost loop in Algorithm 2 is required to ensure that eventually all al-

8

lowed mergers are executed. Consider this likely scenario: A STP is not allowed
to merge with the next STP because the n value after a merger would be just below
lim but the latter STP is allowed to merge with the next BTP. However, on the sec-
ond round the first STP is allowed to merge with the already merged BTP because
the BTP weights much more than the STP in the computation of tput transfer.
Consequently, care must be taken when updating the tput transfer value to take
into account the decrease due to mergers performed on previous rounds – hence the
division by Pk.n when updating tput transfer in Algorithm 2. Finally, a merger
is never started or ended with an ALP.

4 Validation

Validation of our algorithm was done using the Web100 software [10] that al-
lows querying of the state variables of active TCP connections locally on a Web100-
enabled machine. We generated traffic with a BitTorrent client by seeding, i.e.
uploading to other clients, a very large and popular torrent. We recorded packet
headers with tcpdump and simultaneously sampled the current state of applica-
tion write buffer for all active connections with Web100. This Web100 variable
gives the current number of bytes of application data buffered by TCP and that is
pending first transmission. We ran our algorithm on the collected tcpdump data
and compared the results to those from Web100.

We computed two binary time series for each observed connection that con-
tained at least 130 data packets: one from the output of our algorithm and another
from the Web100 data. A binary time series sample per a predefined time window
was generated. A zero value signifies that the sample belongs to an ALP and one
to a BTP. We output a one whenever the time window was entirely or mostly within
a transfer period identified by our algorithm, or, in the case of Web100 data, when-
ever the time-weighted average amount of bytes in the application write buffer was
worth at least MSS during the time window. A zero was output otherwise. These
two time series were compared sample by sample and the fraction d of matching
samples was computed.

We analyzed 99 connections amounting to 11.7 GB of transfer in total. Each
connection was broken on the average into 279 periods by our algorithm. Figure 5
shows a CDF of d for these connections. The periods identified by the Algorithm
1, i.e. those with lim = 1, were used. Overall the match is very good but not
perfect. Indeed, we can identify several sources of error due to the way Web100
is operated: The ability to query the Web100 variables and to write the data on
the disk is limited by the speed of CPU and disk I/O. We were able to achieve
a maximum sampling rate of approximately 67 samples/s, i.e. one sample each
15 milliseconds, during the experiments. As the changing rate of the measured
variable is in reality limited only by the arrival rate of packets, that can be easily
ten times higher than our sampling rate, we failed to capture all dynamics with
Web100. Consequently, as Figure 5 shows, the coarser the granularity, the better

9

the accordance because of smoothing of the smallest time-scale variance in both
time series. Means of d are 0.9713, 0.9570, and 0.9517 for time windows 1000,
100, and 10 milliseconds, respectively. In addition, the timestamps for the two data
sources might not be 100% in sync because we used plain commodity hardware.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

F
(x

)
0.01 sec
0.1 sec
1 sec

Figure 5: CDF of d for the periods with lim = 1.

5 Per-Application Analysis

We applied the IM algorithm to eight different traffic traces each containing
traffic from a specific application. All of the application specific traces were ex-
tracted from the same original public ADSL access network traces (the first 19
days from Location 4 traces in [1]) by filtering on the well-known TCP port num-
bers of these applications. This gives in most of the cases solely the traffic from
the expected application except for some cases where well-known TCP ports are
used, for example, by P2P applications to bypass firewalls. In the following, we
will only highlight the most interesting observations that our analysis has brought
up.

Table 1 summarizes the characteristics of the traces. Only one connection in
the traces could not be analyzed due to the lack of a RTT estimate. We used th = 3
with Algorithm 1. Regardless of the application type, BTPs were found only in
a small fraction of the connections. However, BTPs generally carry the majority
of the bytes. The average size of the connections including no BTPs was below
30KB for all applications except for FTP which had an average of 220KB. Oddly
enough, the largest ones of these FTP connections, carrying up to 90MB, appeared
clearly to be rate limited by the application sending constantly small packets. These
unexpected examples clearly emphasize the need to identify the BTPs even for
“bulk transfer applications” such as FTP.

10

Table 1: Trace characteristics.

traffic type BitTorrent eDonkey FTP data SSH Gnutella HTTP(S) FastTrack WinMX

port numbers 6881-6889 4661,4662 20 22 6346,6347 80,443 1214 6699
duration 4d 22h 4d 22h 18d 22h 18d 22h 18d 22h 4d 22h 18d 22h 18d 22h
packets 31M 44M 9M 1M 8M 14M 20M 13M
bytes 19GB 20GB 7GB 978MB 2GB 9GB 14GB 5GB
cnxs 150K 1.6M 5.9K 4.2K 410K 590K 360K 6.3K

cnxs with BTPs 12K 7.5K 430 180 1.2K 3.3K 5.9K 720
bytes in BTPs (lim=1) 3.5GB 2.9GB 4.7GB 630MB 700MB 4.8GB 5.2GB 490MB

bytes in BTPs (lim=0.9) 9.0GB 7.4GB 5.9GB 720MB 1.3GB 5.1GB 10GB 1.6GB
avg BTP size (lim=1) 780KB 460KB 3.3MB 2.5MB 600KB 1.6MB 700KB 480KB

avg BTP size (lim=0.9) 590KB 1.1MB 13.3MB 8.4MB 1.2MB 1.8MB 1.6MB 2.6MB
avg BTP dur. (lim=1) 45s 2m 33s 1m 2s 1m 17s 1m 5s 41s 1m 54s 1m 50s

avg BTP dur. (lim=0.9) 1m 50s 6m 12s 4m 57s 5m 9s 3m 7s 59s 4m 56s 8m 23s

5.1 Properties of the Identified BTPs

Figures 6 and 7 show for some selected applications the number of identified
BTPs and the fraction of all bytes carried by them, respectively, as a function of
the threshold parameter lim. The number of identified BTPs varies differently
with the lim value. The reason is that we require a BTP to contain at least 130
data packets. Thus, sometimes new BTPs are formed by merging together only
STPs when lim value is decreased, which increases the total BTP count. Indeed,
we checked that for all the applications the total count of BTPs and STPs together
is always increasing when increasing lim value. Similarily in Figure 7, all the byte
ratios are increasing when decreasing the lim value because mergers always bring
more bytes into BTPs. eDonkey clients often limit the maximum upload rate and
we observe that majority of the bytes are in ALPs. Also BitTorrent clients often
throttle back their upload rate. However, as Figures 9 and 10 show, eDonkey and
BitTorrent clients seem to implement rate limitation differently. While eDonkey
clients regulate the rate by varying constantly the amount of bytes passed to TCP
(packet sizes in Figure 9 are systematically below MSS), BitTorrent clients give
data in larger blocks and stay idle between the transfers of two blocks. The effect
is also visible as different shapes of curves in Figure 7: The small chunks of data
sent by a BitTorrent client generate STPs that are then merged together as BTPs
when lim value is low enough while the small packets sent by eDonkey client gen-
erate connections consisting only of ALPs. In contrast, with FTP the vast majority
of bytes are carried by BTPs and the byte ratio in Figure 7 is quite insensitive to the
lim value indicating that most connections compose of only a single BTP. In other
words, FTP exhibits the purest form of “bulk transfer application”. This is con-
firmed by Figure 8, which shows the number of BTPs per connection. BitTorrent
connections are commonly broken into many BTPs due to the oscillation between
the choked and unchoked state of the protocol.

11

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00
80

00
12

00
0

lim

to
ta

l b
ul

k
tr

an
sf

er
 p

er
io

d
co

un
t

eDonkey
BitTorrent
HTTP
FTP

Figure 6: Number of iden-
tified BTPs vs. lim.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lim

B
T

P
 b

yt
es

 p
er

 a
ll

by
te

s

eDonkey
BitTorrent
HTTP
FTP

Figure 7: Fraction of all
bytes in BTPs vs. lim.

1 2 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BTPs per connection

F
(x

)

eDonkey
BitTorrent
HTTP
FTP

Figure 8: Number of iden-
tified BTPs, lim = 0.9.

10525000

10520000

10515000

10510000

10505000

10500000

13.900013.800013.700013.600013.5000

sequence number

time

��������
R��������������

Figure 9: Rate limited eDonkey connec-
tion.

800000

790000

780000

770000

760000

25.600025.400025.2000 20:01:25 24.800024.6000

RTT=23ms
sequence number

time

�
�

�
��

Figure 10: Rate limited BitTorrent con-
nection.

5.2 Comparing BTPs to Entire Connections

We investigated also the relation between the durations of BTPs and the bytes
carried by them with respect to the duration and volume of the entire connec-
tion. For the connections with at least one BTP, we computed ratios of durations

(
�

BTP duration
cnx duration

), volumes (
�

BTP bytes
cnx bytes

), and throughputs (
(cnx bytes

cnx duration)� �
BTP bytes�

BTP duration �) be-

tween BTPs (with lim = 0.9) and the entire connections shown in Figures 11,
12, and 13. BitTorrent connections often experience long choke periods that are
identified as ALPs, which explains the small duration ratio observed for most con-
nections. Note that Figures 11, 12, and 13 do not include the connections with no
BTPs at all. That is why eDonkey has relatively few connections with low volume
ratio – the rate limited eDonkey connections typically consist only of ALPs. There
are more BitTorrent connections with small volume ratio than with eDonkey, which
is again due to the difference in the way they limit the transmission rate. BTPs of
HTTP traffic contain the vast majority of the bytes of a connection but can be short
when compared to the whole connection. Web surfing with persistent HTTP con-
nections would explain this phenomenon (see Section 2). Interestingly enough,
Figure 13 reveals the dual nature of SSH traffic. On one hand, secure copy (scp)
runs over SSH and similarily any application (e.g. X server application) may be

12

tunneled through a SSH pipe. Establishing a SSH connection requires authenti-
cation, key exchange, and negotiation of a set of parameters, which commonly
produces an ALP of a few seconds. That is why scp, with small and moderate size
files generate BTPs preceded by ALPs. Similarily, some ssh-tunneled applications
which update the screen periodically (e.g. web browser when loading a new page)
generate BTPs separated with ALPs. Hence, the connections with low throughput
ratios. On the other hand, the high throughput ratios may be caused by other more
interactive applications (e.g. telnet) that are run over SSH and generate low rate
BTPs, while they generally consist entirely of ALPs. Indeed, the coefficient of
correlation between BTP throughput and throughput ratio for SSH traffic is -0.43.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

duration ratio

F
(x

)

eDonkey
BitTorrent
HTTP

Figure 11: CDF of dura-
tion ratio

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

volume ratio

F
(x

)

eDonkey
BitTorrent
HTTP

Figure 12: CDF of volume
ratio

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

tput ratio
F

(x
)

eDonkey
BitTorrent
HTTP

Figure 13: CDF of tput ra-
tio

5.3 BTPs vs. ALPs in the analysis of a TCP/IP path

We have argued that it is important to focus on BTPs when studying network
characteristics. In general, BTPs manifest the TCP/IP path properties in a very
different way than do the entire connections, which is illustrated in Figure 13.
As a concrete example, we estimated RTT samples of all connections having at
least one BTP. To compute the RTT samples we used either the technique rely-
ing on TCP timestamps [14] or the technique from [7] when TCP timestamps
were not available. We computed for each connection averages and coefficients
of variation (CoV = stddev

mean
) for two sets of estimated RTT samples: first, in-

cluding only all the BTPs and second, including only all the ALPs. We used
lim = 0.9. Table 2 shows how the relative differences for the average RTTs
(davg = avg(RTTBTP)−avg(RTTALP)

min(avg(RTTBTP),avg(RTTALP))) and differences for the CoV s (dCoV =
CoVBTP − CoVALP) distribute. We can make two main observations concerning
the average RTTs. First, the differences are striking: For instance, more than 20%
of the eDonkey connections have ten times shorter or longer average RTT during
ALPs than during BTPs. A possible explanation for the inflated RTT values during
the ALPs may be that when an ack is assumed to trigger a sending of data packet,
TCP may delay the sending of a data packet because it has no more data to send at
the arrival time of the ack, thus, generating a longer RTT sample (the problem is

13

acknowledged in Section 4.1 in [14]). Second, the results vary significantly from
one application to another. In order to fully explain these findings requires further
investigation and is therefore left as future work. As for the CoV values, we ob-
serve systematically less RTT variation during the ALPs than during the BTPs for
all the applications. Larger RTT variation during BTPs could originate from the
fact that the higher transmission rates of the BTPs compared to the ALPs (refer to
Figure 13) may cause their data packets to experience varying queuing delays with
a higher probability. Again, we leave further investigation as future work.

Table 2: Differences in RTT estimates during BTPs and ALPs.

traffic type davg <-10 davg <-1 davg <-0.1 davg >0 davg >0.1 davg >1 davg >10

eDonkey 14% 37% 44% 54% 50% 35% 7.5%
BitTorrent 0.4% 24% 49% 42% 36% 14% 0.9%
HTTP(S) 0% 2.6% 16% 81% 66% 37% 2.6%

traffic type dCoV <-10 dCoV <-1 dCoV <-0.1 dCoV >0 dCoV >0.1 dCoV >1 dCoV >10

eDonkey 0% 2.0% 11% 86% 80% 27% 0%
BitTorrent 0% 3.1% 25% 67% 59% 13% 0%
HTTP(S) 0% 0% 0.9% 97% 89% 24% 0%

6 Conclusions

Much of the research done on TCP traffic analysis neglects the effects of the
application operating on top. We argue that when trying to characterize the be-
havior of a TCP/IP data path, the impact of the application must be accounted for.
We focused in this paper on the problem of identifying bulk transfer periods, i.e.
periods of traffic where the application impact on the TCP throughput is minimal,
within a TCP connection. We provided an algorithm that isolates these BTPs from
the rest of the traffic and, moreover, allows to quantify the impact of the appli-
cation on the throughput perceived for a TCP connection. We then applied the
algorithm to a variety of different application traffic extracted from public Internet
traces and showed that different applications exhibit clearly different characteris-
tics when studying their BTPs. We also showed the impact of the application oper-
ating on top of TCP when studying the TCP/IP path properties through an example
use case on RTT estimation.

As future work we are going to extend our work on the root cause analysis
of TCP throughput [12] with the help of the IM algorithm to include all types
of application traffic. We would also like to investigate some of the TCP traffic
properties, such as burstiness [5] [9], in order to quantify the impact of applications
on these properties. Finally, we also want to examine the many connections that
contain no BTPs.

14

Acknowledgments

This work has been partly supported by France Telecom, project CRE-46126878.

References

[1] “M2C Measurement Data Repository: http://m2c-
a.cs.utwente.nl/repository/”.

[2] “RFC 2001: ftp://ftp.rfc-editor.org/in-notes/rfc2001.txt”.

[3] M. Allman and A. Falk, “On the effective evaluation of TCP”, Comput.
Commun. Rev., 29(5):59–70, 1999.

[4] S. Baset and H. Schulzrinne, “An Analysis of the Skype P2P Internet
Telephony Protocol”, CUCS-039-04, Department of Computer Science,
Columbia University, 2004.

[5] E. Blanton and M. Allman, “On the Impact of Bursting on TCP Perfor-
mance”, In Proceedings of Passive and Active Measurements (PAM), 2005.

[6] B. Cohen, “Incentives to Build Robustness in BitTorrent”, Technical Report,
http://bitconjurer.org/BitTorrent/bittorrentecon.pdf, May 2003.

[7] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Inferring TCP
Connections Characteristics from Passive Measurements”, In Proc. Infocom
2004, March 2004.

[8] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip times”,
Comput. Commun. Rev., 32(3):75–88, 2002.

[9] H. Jiang and C. Dovrolis, “Source-level IP packet bursts: causes and effects”,
In IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pp. 301–306, New York, NY, USA, 2003, ACM Press.

[10] M. Mathis, J. Heffner, and R. Reddy, “Web100: extended TCP instru-
mentation for research, education and diagnosis”, Comput. Commun. Rev.,
33(3):69–79, 2003.

[11] A. Medina, M. Allman, and S. Floyd, “Measuring the Evolution of Transport
Protocols in the Internet”, Comput. Commun. Rev., 35(2):37–52, April 2005.

[12] M. Siekkinen, G. Urvoy-Keller, E. Biersack, and T. En-Najjary, “Root Cause
Analysis for Long-Lived TCP Connections”, In Proceedings of CoNEXT,
October 2005.

[13] G. Urvoy-Keller, “On the Stationarity of TCP Bulk Data Transfers”, In
Passive and Active Measurements 2005, March 2005.

15

[14] B. Veal, K. Li, and D. Lowenthal, “New Methods for Passive Estimation
of TCP Round-Trip Times”, In Proceedings of Passive and Active Measure-
ments(PAM), 2005.

[15] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the Characteristics and
Origins of Internet Flow Rates”, In Proceedings of ACM SIGCOMM 2002
Conference, Pittsburgh, PA, USA, August 2002.

16

