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Precoding of Orthogonal Space-Time Block Codes

in Arbitrarily Correlated MIMO Channels: Iterative

and Closed-Form Solutions

Are Hjørungnes, Member, IEEE, and David Gesbert, Member, IEEE.

Abstract

A memoryless precoder is designed for orthogonal space-time block codes (OSTBCs) for multiple-input

multiple-output (MIMO) channels exhibiting joint transmit-receive correlation. Unlike most previous similar works

which concentrate on transmit correlation only and pair-wise error probability (PEP) metrics, 1) the precoder

is designed to minimize the exact symbol error rate (SER) as function of the channel correlation coefficients,

which are fed back to the transmitter. 2) The correlation is arbitrary as it may or may not follow the so-called

Kronecker structure. 3) The proposed method can handle general propagation settings including those arising from

a cooperative macro-diversity (multi-base) scenario. We present two algorithms. The first is suboptimal, but provide

a simple closed-form precoder that handles the case of uncorrelated transmitters, correlated receivers. The second

is a fast-converging numerical optimization of the exact SER which covers the general case. Finally, a number of

novel properties of the minimum SER precoder are derived.

Index Terms: MIMO, orthogonal space-time block code, precoder optimization, minimum exact symbol error rate, power constraint.

I. INTRODUCTION

In the area of efficient communications over non-reciprocal MIMO channels, recent research [2], [3],

[4], [5] has demonstrated the value of feeding back to the transmitter information about channel state

observed at the receiver. Among those, there has been a growing interest in transmitter schemes that

can exploit low-rate long-term statistical channel state information in the form of antenna correlation

coefficients. So far, emphasis has been on designing precoders for space-time block coded (STBC) [3]

Corresponding author: A. Hjørungnes is with UniK - University Graduate Center, University of Oslo, Instituttveien 25, P. O. Box 70,

N-2027 Kjeller, Norway, email: arehj@unik.no, phone: +47-64844700, and fax: +47-63818146.

D. Gesbert is with the Mobile Communications Department, Eurécom Institute, 2229 Route des Crêtes, BP 193, F-06904 Sophia Antipolis

Cédex, France, email: david.gesbert@eurecom.fr.

Part of this work was presented in [1]. This work is supported by the Research Council of Norway through project number 157716/432.



Submitted 18.04.2005 to IEEE Transactions on Wireless Communications 2

signals or spatially multiplexed streams that are adjusted based on the knowledge of the transmit correlation

only while the receiving antennas are uncorrelated [4], [5], [6], [7]. These techniques are well suited to

downlink situations where an elevated access point (situated above the surrounding clutter) transmits to

a subscriber placed in a rich scattering environment. Although simple models exist for the joint transmit

receiver correlation based on the well known Kronecker structure [3], the accuracy of these models has

recently been questioned in the literature based on measurement campaigns [8]. Therefore, there is interest

in investigating the precoding of OSTBC signals for MIMO channels that do not necessarily follow the

Kronecker structure.

An upper bound of the PEP is minimized in [4], [5] for transmit-only correlation, and for full channel

correlation in [2], [9]. In [10], the exact SER expressions were derived for when there is no receiver

correlation and maximum ratio combining is used at the receiver. A bound of the exact error probability

was used as the optimization criterion in [10]. The no receiver correlation assumption might be an

unrealistic channel model for example in uplink communications, where the access point (receiver) is

equipped with several receiver antennas and where the direction of arrival has a small spread at the

receiver antennas. In [11], exact SER expressions were found for uncorrelated MIMO channels that are

precoded with the identity matrix. Exact expressions where derived for correlated Rayleigh and Ricean

Fading channels without precoding in [12].

In this paper, we address the problem of linear precoding of OSTBC signals launched over a jointly

transmit-receive correlated MIMO channel when the transmitter knows the correlation matrix of the MIMO

channel matrix and the receiver knows the channel realization exactly. Our main contributions are:

1) We derive easy to evaluate exact expressions for the average SER for a system where the transmitter

has an OSTBC followed by a full precoder matrix and where the receiver also has multiple antennas

and is using maximum likelihood decoding (MLD).

2) We propose an iterative numerical technique for minimizing the exact SER with respect to the

precoder matrix. This is in contrast with previous precoders based on bounds of the SER or the PEP

and also do not address the arbitrary non-Kronecker correlation case.

3) Several properties of the minimum SER precoder are presented. We identify cases in which the

precoder is dependent or not of the receive correlation matrix. We show the dependency is strongly

related to the Kronecker model being valid or not.
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4) An analytical closed-form precoder is proposed as an approximation based on the hereby proposed

Equal diversity spread principle, in the particular case of cooperative diversity. This solution is also

easily interpretable.

The rest of this article is organized as follows: In Section II, the precoded OSTBC system is described.

Exact SER expressions are derived in Section III. Section IV presents the optimization problem and

several properties of the minimum SER precoder are derived. In Section V, a closed-form solution is

proposed when no transmit correlation is present. A numerical optimization algorithm for the general

case is proposed in Section VI. Section VII contains simulation results and comparisons to alternative

solutions. Section VIII presents the conclusions and the proofs are given in the appendices.

II. SYSTEM DESCRIPTION

A. OSTBC Signal Model

Figure 1 (a) shows the block MIMO system model with Mt and Mr transmitter and receiver antennas,

respectively. The transmit symbol vector of size K×1 is denoted x = [x0, x1, . . . , xK−1]
T , where xi ∈ A,

where A is a signal constellation set such as uniform M-PAM, M-QAM, or M-PSK, satisfying E [|xi|2] =

σ2
x. This vector is transmitted by means of a given OSTBC matrix C(x) of size B ×N , where B and N

are the space and time dimension of the OSTBC, respectively. If bits are used as inputs to the system,

K log2 M bits are used to produce the vector x. Since the OSTBC is orthogonal, the following holds:

C(x)CH(x) = a
∑K−1

i=0 |xi|2IB , where a = 1 if C(x) = GT
2 , C(x) = HT

3 , or C(x) = HT
4 in [13] and

a = 2 if C(x) = GT
3 or C(x) = GT

4 in [13]. The rate of the code is K/N . The developed theory is valid

for any OSTBC. A precoder F of size Mt×B is applied before the signal is sent over the channel MIMO

channel H of size Mr × Mt. The channel is corrupted by the additive block noise V , of size Mr × N ,

which is complex Gaussian circularly distributed with independent components having variance N0 and

zero mean. The Mr × N receive block signal Y becomes

Y = HFC(x) + V . (1)

The receiver is assumed to know H and F exactly, and it performs MLD of blocks of size Mr × N to

find an estimate of x denoted x̂.
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B. Correlated Channel Models

A flat block-fading correlated Rayleigh fading channel model [3] is assumed. Let the channel H have

zero mean, complex Gaussian circularly distribution with positive semi-definite autocorrelation given by

R = E
[
vec (H) vecH (H)

]
of size MtMr ×MtMr, where the operator vec(·) stacks the columns of the

matrix it is applied to into a long column vector [14]. A channel realization of the correlated channel can

then be found by vec (H) = R1/2 vec (Hw), where R1/2 is the unique positive definite matrix square

root [15] of R and Hw has size Mr×Mt and is complex Gaussian circularly distributed with independent

components all having unit variance and zero mean.

Kronecker model: A special case of the model above is as follows [3]

R = RT
t ⊗ Rr, (2)

where the operator (·)T denotes transposition, ⊗ is the Kronecker product, the matrices Rr and Rt are

the correlations matrices of the receiver and transmitter, respectively, and their sizes are Mr × Mr and

Mt ×Mt. Unlike (2), the general model considers that the receive (or transmit) correlation depends on at

which transmit (or receive) antenna the measurements are performed.

C. Equivalent Single-Input Single-Output Model

Let Φ � R1/2
[(

F ∗F T
)⊗ IMr

]
R1/2 be a positive semidefinite matrix of size MtMr ×MtMr. Define

the scalar α � ‖HF ‖2
F = vecH (Hw) Φ vec (Hw), where ‖ · ‖F is the Frobenius norm. By generalizing

the approach given in [11], [16] to include a full complex-valued precoder F of size Mt ×B and having

a full channel correlation matrix R the OSTBC system can be shown to be equivalent to a collapsed

system having the following output input relationship

y′
k =

√
αxk + v′

k, (3)

for k ∈ {0, 1, . . . , K − 1}, and where v′
k ∼ CN (0, N0/a) is complex circularly distributed. This signal is

fed into a memoryless MLD that is designed from the signal constellation of the source symbols A. The

equivalent single-input single-output (SISO) model is shown in Figure 1 (b).

III. SER EXPRESSIONS

A. SER Expressions for Given Received SNR

By considering the SISO system in Figure 1 (b), it is seen that the instantaneous received SNR γ

per source symbol is given by γ � aσ2
xα

N0
= δα, where δ � aσ2

x

N0
. Define the following three signal
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constellation dependent constants gPSK � sin2 π
M

, gPAM � 3
M2−1

, and gQAM � 3
2(M−1)

. The symbol

error probability SERγ � Pr {Error|γ} for a given γ for M-PSK, M-PAM, and M-QAM signaling

are, respectively, given by [17]

SERγ =
1

π

∫ (M−1)π
M

0

e
− gPSKγ

sin2(θ) dθ, (4)

SERγ =
2

π

M − 1

M

∫ π
2

0

e
− gPAMγ

sin2(θ) dθ, (5)

SERγ =
4

π

(
1 − 1√

M

)[
1√
M

∫ π
4

0

e
− gQAMγ

sin2(θ) dθ +

∫ π
2

π
4

e
− gQAMγ

sin2(θ) dθ

]
. (6)

B. Exact SER Expressions

The moment generating function of the probability density function pγ(γ) is defined as φγ(s) �∫∞
0

pγ(γ)esγdγ. Since all the K source symbols xk go through the same SISO system in Figure 1 (b),

the average SER of the MIMO system can be found as

SER � Pr {Error} =

∫ ∞

0

Pr {Error|γ} pγ(γ)dγ =

∫ ∞

0

SERγ pγ(γ)dγ. (7)

From the definition of α, it is seen that α = vecH (H ′
w)Λ vec (H ′

w) where H ′
w and Hw has the same

distribution, and from this expression of α, it follows [18] that φα(s) is given by: φα(s) = 1∏MtMr−1
i=0 (1−λis)

,

where λi is eigenvalue number i of the positive semi-definite matrix Φ. Since γ = δα, it follows that

φγ(s) is given by:

φγ(s) = φα (δs) =
1

MtMr−1∏
i=0

(1 − δλis)

. (8)

By using (7) and the definition of φγ(s) together with the result in (8), it is possible to express the exact

SER for all the signal constellations in terms of the eigenvalues λi of Φ. When finding the necessary

conditions for the optimal precoder, eigenvalues that are not simple1 might cause difficulties in connection

with calculations of derivatives. Therefore, it is useful to rewrite the SER expressions in terms of the

matrix Φ. This can be done by utilizing its eigen-decomposition. The result of all these operations led to

the following exact expressions for the SER for M-PSK, M-PAM, and M-QAM

1The matrix Φ ∈ C
MtMr×MtMr has in general MtMr different non-negative eigenvalues. However, the roots of the characteristic equation,

i.e., the eigenvalues need not to be distinct. The number of times an eigenvalue appears is equal to its multiplicity. If one eigenvalue appear

only once, it is called a simple eigenvalue [19].
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SER =
1

π

∫ (M−1)π
M

0

dθ

det
(
IMtMr + δ gPSK

sin2 θ
Φ
) , (9)

SER =
2

π

M − 1

M

∫ π
2

0

dθ

det
(
IMtMr + δ gPAM

sin2 θ
Φ
) , (10)

SER =
4

π

√
M − 1√

M

[
1√
M

∫ π
4

0

dθ

det
(
IMtMr + δ

gQAM

sin2 θ
Φ
) +

∫ π
2

π
4

dθ

det
(
IMtMr + δ

gQAM

sin2 θ
Φ
)
]

, (11)

respectively. It is seen that (9) and (10) give the same result when M = 2, and this is not surprising, since,

the 2-PSK and 2-PAM constellations are identical. When M = 4, it can be shown that (9) and (11) return

the same result. If R = IMtMr and F = IMt , then the performance expressions are reduced to the results

found in [11]. If δ → 0+, it is seen from (9), (10), and (11), that SER → M−1
M

for any precoder F , which

clearly is the symbol error rate for a random symbol generator. The expressions in [12] are not as easy to

evaluate as the proposed expressions since, in [12], the input signal constellation was arbitrary and then

the SER expressions must be found by performing two-dimensional integrals over possibly complicated

regions in the complex plane. The proposed expressions are very easy to evaluate.

IV. PRECODING OF OSTBC SIGNALS FOR THE GENERAL CASE

A. Optimal Precoder Problem Formulation

By using the properties of OSTBCs the average power constraint on the transmitted block Z � FC(x)

can be expressed as aKσ2
x Tr

{
FF H

}
= P , where P is the average power used by the transmitted block Z.

The goal is to find the matrix F such that the exact SER is minimized under the power constraint. We

propose that the optimal precoder is given by the following optimization problem:

Problem 1:

min
{F∈CMt×B | Kaσ2

x Tr{FFH}=P}
SER .

Remark 1: In general, the optimal precoder is dependent on the value of N0 and, therefore, also on

the signal to noise ratio (SNR) defined as SNR � 10 log10
P
N0

.

B. Upper Bound on SER and Connection to PEP

If sin2(θ) is replaced with 1 in all the integrals in (9), (10), and (11), the following upper bound is

found for SER for all the constellations considered:

SER ≤ M − 1

M

1

det (IMtMr + δgΦ)
, (12)



Submitted 18.04.2005 to IEEE Transactions on Wireless Communications 7

where g is chosen according to the signal constellation. If this upper bound of SER is minimized under

the power constraint, it is seen that this is equivalent to maximizing det (I MtMr + δgΦ) under the power

constraint. In [10], this criterion was used when there is no correlation between the receiver antennas,

and the criterion is equivalent to an upper bound on PEP used in [9] for a full correlation matrix R.

Interestingly, the minimum SER and the PEP based precoders will perform similarly in the very low

and very high SNR range. For medium values of SNR, some gain can be achieved by using the SER

based method over the PEP.

C. Properties of the Optimal Precoder

Below, we give several properties to help characterize the optimal precoder in particular situations of

interest.

Lemma 1: If F is an optimal solution of Problem 1, then the precoder FW , where W ∈ C
B×B is

unitary, is also optimal.

The proof of this lemma can be found in Appendix I.

Proposition 1: If B = Mt, then it is possible to chose the optimal precoder F Hermitian or symmetric.

The proof of this proposition can be found in Appendix II.

Proposition 2: If SNR → ∞, B = Mt, and R is non-singular, then the optimal precoder is given by the

trivial identity-scaled precoder F =
√

P
Kaσ2

xMt
IMt for the M-PSK, M-PAM, and M-QAM constellations.

The proof of this proposition can be found in Appendix III. This comforts the information theoretic

viewpoint by which channel-based transmitter optimization yields no benefit at high SNR in MIMO

Rayleigh channels [20].

Remark 2: If R is singular, examples can be constructed showing that, in general, the optimal

precoder F is not proportional to the identity matrix when SNR → +∞, see Scenario 2 in Section VII.

Proposition 3: If Mt = B and R = IMtMr , then the optimal precoder is given by the trivial

precoder F =
√

P
Kaσ2

xMt
IMt for the M-PSK, M-PAM, and M-QAM constellations.

The proof of this proposition can be found in Appendix IV. Proposition 3 shows that there is no need for

precoding in the absence of any correlation. The result in Proposition 3 is also given in [10].

Proposition 4: The diversity of a system using a precoder satisfying rank (F ) = Mt is rank (R).

For the proof see Appendix V.
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Proposition 5: If R has full rank, then some diversity is lost by using B < Mt.

For the proof see Appendix VI. In this case, this makes sense since some spatial degrees of freedom

are not being excited at the transmitter.

We now give an important result, which extends one of the results given in [4].

Theorem 1: Let R satisfy (2), and let the transmitter correlation matrix have the following eigen-

decomposition Rt = U tΛtU
H
t , where U t ∈ CMt×Mt is unitary and Λt is diagonal of size Mt ×Mt. The

optimal SER precoder can be expressed as F = U t∆, where ∆ is a diagonal matrix of size Mt × B.

The proof of this theorem can be found in Appendix VII. According to this result, the optimal precoder

is built from a singular vector transmit matrix obtained in closed form, along with a power allocation

scheme. In [4], a PEP criterion is used to obtain the optimal power allocation based on a water-filling

procedure when the receiver correlation matrix was equal to the identity matrix. Theorem 1 is valid for

any receiver correlation matrix in the Kronecker model and, therefore, it extends one of the main result

in [4] to the SER criterion with arbitrary receiver correlation in the Kronecker model.

Note that, signaling on the eigenvectors of the transmitter correlation matrix was also used in [4], [5]

for the precoder that minimizes an upper bound of the PEP when Rr = IMr was used in the Kronecker

model in (2). A similar factorization result was found for maximizing the capacity with a full Kronecker

model in [23]. If the full correlation matrix does not follow the Kronecker product assumption, then

the transmitter correlation matrix is simply not definable. In this case, the general iterative optimization

technique presented in Section VI can be applied to find the minimum SER precoder.

V. PRECODING OF OSTBC FOR ZERO TRANSMIT CORRELATION

We now focus on the case where the transmit antennas are uncorrelated, yet the receive antennas are.

What is intriguing in this case is that it is not intuitively clear what role a transmit precoder can play to

improve performance when there is no transmit correlation structure to be exploited. However, we give a

key result here showing that precoding will help simply in all cases where the Kronecker assumption (2)

does not hold, a key example of which is addressed below.

A. Distributed Space Time Coding

In distributed (or cooperative) space time coding [21], [22], the code word is transmitted from antennas

belonging to distinct access points, toward the users. Thus, the transmitter antennas are widely separated

and typically experience different channel correlation at the same receiving array, see Figure 2.
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If only receiver correlation is present, the total correlation matrix can be expressed as

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Rr0 0Mr×Mr · · · 0Mr×Mr

0Mr×Mr Rr1 · · · 0Mr×Mr

...
...

. . .
...

0Mr×Mr 0Mr×Mr · · · RrMt−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

where Rri
is the receive correlation matrix "seen" from transmitter number i and the matrix 0k×l of size

k × l, contains only zeroes.

We now proceed to prove two key results. First, claims are formulated, then interpretations are given.

Theorem 2: Let B = Mt. If (13) holds, the optimal F can be chosen diagonal with real and non-

negative diagonal elements.

The proof of this theorem can be found in Appendix VIII.

Theorem 3: Let B = Mt and let R satisfy (13) with Rri
= Rr for all i ∈ {0, 1, . . . , Mt − 1}. This is

the same as using Rt = IMt in (2). Then the optimal precoder is independent of the receiver correlation

matrix Rr and the precoder is given by F =
√

P
Kaσ2

xMt
IMt .

The proof of this theorem can be found in Appendix IX.

Interpretations: Theorem 2 tells us that despite the lack of transmitter correlation, a transmit precoder

makes sense whenever the Kronecker structure for the overall correlation matrix does not hold, a practical

case of which is seen in cooperative/distributed OSTBC. It also tells us that precoding takes the form of

power allocation across the transmit antennas. In the next subsection, we propose a closed form approach

to derive the power weights. Theorem 3 indicates that if the Kronecker structure holds (in addition to

having uncorrelated transmitters, correlated receivers), then the precoder has no useful impact.

B. Solution for a Closed-Form Precoder

In this subsection, we derive a method to obtain a closed-form expression for the precoder in the

particular case when the transmit antennas are uncorrelated but the receive antennas are not, i.e., R

satisfies (13). From Theorem 2, the optimal precoder boils down to a diagonal precoder, i.e., the precoder

amounts to a power allocation strategy. For the sake of space, we limit ourselves to the case of two

transmitters. We also assume the two transmitters experience the same average path loss to the receiver.

Generalizations to Mt > 2 and unequal path loss cases are addressed in a separate paper [24]. The number
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of receive antenna remains arbitrary. We also take the following normalization: P
aKσ2

x
= 1. For the diagonal

2 × 2 precoder F to satisfy the power constraint, it follows that f 2
0 + f 2

1 = 1, where fi � (F )i,i.

1) Equivalent SISO Channel Formulation: Let H = [h0, h1] and Rri
= E

[
hih

H
i

]
have the following

eigen-decomposition: Rri
= V ri

Λri
V H

ri
. From vec (H) = R1/2 vec (Hw), it follows that hi = R1/2

ri
hwi

,

where hwi
is an Mr × 1 vector containing zero-mean complex Gaussian i.i.d. components. From the

equivalent SISO model in (3), it is seen that all the K original symbols are going through the same SISO

system. From the definitions of Φ and α, it is seen that α, in the equivalent SISO model, can be expressed

as:

α =f 2
0‖h0‖2 + f 2

1‖h1‖2 = f 2
0

Mr−1∑
j=0

λr0j
|h′

w0j
|2 + f 2

1

Mr−1∑
j=0

λr1j
|h′

w1j
|2, (14)

where the variable h′
wij

is the jth component of the vector V H
ri

hwi
. Since V ri

is unitary, each of the

variables h′
wij

has the same distribution as the variables hwij
� (hwi

)j.

2) Equal Diversity Spread Principle: In this subsection, we examine the expression for α and propose

a simple framework coined equal diversity spreading that allows us to determine the power weights f0 and

f1 in closed form, thus serving as a practical alternative to the numerical-based optimization of the symbol

error rate. Note that, we do not claim optimality of the approach below in terms of error rate, although

we do conjecture the obtained coefficients are close to optimal, which is confirmed by our simulations

later.

From (14), α is a sum of 2Mr uncorrelated diversity branches h′
wij

weighted by f 2
i λrij

. According to

our proposed principle, we make these weights as similar to each other as possible in order to spread

the symbol energy evenly across all diversity branches. This translates simply into a minimum variance

problem.

Interestingly, the mean m of the weighing factors f 2
i λrij

is constant, given by

m =
1

2Mr

1∑
i=0

Mr−1∑
j=0

f 2
i λrij

=
f 2

0

2Mr

Mr−1∑
j=0

λr0j
+

f 2
1

2Mr

Mr−1∑
j=0

λr1j
=

1

2Mr
(f 2

0 Mr + f 2
1 Mr) =

1

2
,

where it is assumed that Tr {Rri
} = Mr ∀ i. The weights are now obtained from minimizing the

variance (under mean constraint):
Problem 2:

min
{f0,f1≥0 | f2

0 +f2
1=1}

1∑
i=0

Mr−1∑
j=0

(
f 2

i λrij
− 1

2

)2

.
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Fortunately, this problem admits a simple closed-form solution which is detailed in the theorem below.

Theorem 4: We parametrize the precoder according to f0 = cos(θ) and f1 = sin(θ), where θ is

arbitrary in
[
0, π

2

]
. The solution to Problem 2 is given in terms of θ by:

tan θ =

√√√√Mr−1∑
j=0

λ2
r0j

/
Mr−1∑
j=0

λ2
r1j

. (15)

The proof of this theorem can be found in Appendix X.

Interpretations: Theorem 4 can be interpreted as follows: The power allocation scheme above assigns

more power on the transmit branch experiencing less receiver correlation and less power on the other one.

However, note that, this is not a water-filling strategy (unlike [4]) the power levels are always strictly

bounded away from zero.

Interestingly, it can be shown that the principle above, beyond simple intuition, bears close connection

to symbol error rate optimization and thus can be formally justified [24].

We now examine two scenario examples of application of this result.

Example 1 (Precoding for Kronecker Correlation): We can make the model used in (13) a Kro-

necker one by setting Rr0 = Rr1 , in which case the eigenvalues are characterized by λr0j
= λr1j

which

according to (15) yields f 2
0 = f 2

1 = 1
2
. In other words, if the transmit antennas are uncorrelated and

the receive antenna are correlated but in a way that is independent of which transmit antenna is taken,

then the best strategy is to pour power equally across the transmit antennas, which makes good intuitive

sense. It means that the fact that the receive antennas are correlated when the transmitter antennas are

uncorrelated, cannot be compensated for at the transmitter through precoding of the OSTBC signals in

the Kronecker case.

Example 2 (Precoding for Non-Kronecker Correlation): Consider the distributed space time coding

of signals with Mt = 2 with the case where the two transmit antennas see two widely different receive

correlation matrices. Transmit antenna number 0 sees an uncorrelated receiver Rr0 = IMr . This corre-

sponds to a link with Mr orders of diversity with a wide angle spread in the direction of arrival. While

antenna number 1 sees a fully correlated receiver Rr1 = 1Mr×Mr , where the matrix 1Mr×Mr contains

only ones and has size Mr × Mr. Hence, transmit link from transmitter antenna number 1 corresponds

to a link with no receive diversity, due to, e.g., a small angle spread in the direction of arrival, see



Submitted 18.04.2005 to IEEE Transactions on Wireless Communications 12

Figure 2. However, the overall MIMO channel still exhibits transmit diversity of order two. In this example,

λr0i
= 1 ∀ i ∈ {0, 1, . . . , Mr − 1} and λr10

= Mr and λr1i
= 0 ∀ i ∈ {1, . . . , Mr − 1}. Theorem 4

yields directly tan θ =
√

1
Mr

, thus, f 2
0 = Mr

Mr+1
and f 2

1 = 1
Mr+1

. Interestingly, this result is reminiscent of

the classical water-filling result in information theory. Here, the channel quality is measured in terms of

receive diversity order instead of average SNR. Hence, more power is poured into the transmit channel

that exhibits more diversity and less into the other transmit channel.

VI. OPTIMIZATION ALGORITHM FOR GENERAL CORRELATION CASE

We now return to general case of arbitrary joint transmit-receive correlation, where a closed-form

precoder is difficult to derive. Instead, we focus on a fast-converging numerical algorithm for the SER

minimization problem.

Let Kk,l be the commutation2 matrix [14] of size kl × kl. The constrained maximization Problem 1

can be converted into an unconstrained optimization problem by introducing a Lagrange multiplier µ ′:

L(F ) = SER +µ′ Tr
{
FF H

}
. (16)

Since the objective function should be minimized, µ′ > 0. Define the M2
t × M2

t M2
r matrix Π as

Π =
[
IM2

t
⊗ vecT (IMr)

]
[IMt ⊗ KMt,Mr ⊗ IMr ] . (17)

In order to present the results compactly, define the following BMt × 1 vector s(F , θ, g, µ):

s(F , θ, g, µ) = µ
[
F T ⊗ IMt

]
Π
[
R1/2 ⊗

(
R1/2

)∗] vec

([
IMtMr + δ g

sin2(θ)
Φ∗
]−1
)

sin2(θ) det
(
IMtMr + δ g

sin2(θ)
Φ
) . (18)

Theorem 5: The precoder that is optimal for Problem 1 must satisfy:

vec (F ) =

∫ M−1
M

π

0

s(F , θ, gPSK, µ)dθ, (19)

vec (F ) =

∫ π
2

0

s(F , θ, gPAM, µ)dθ, (20)

vec (F ) =
1√
M

∫ π
4

0

s(F , θ, gQAM, µ)dθ +

∫ π
2

π
4

s(F , θ, gQAM, µ)dθ. (21)

for the M-PSK, M-PAM, and M-QAM constellations, respectively. µ is a positive scalar chosen such

that the power constraint in Problem 1 is satisfied.

The proof of this theorem can be found in Appendix XI.

2The commutation matrix Kk,l is the unique kl×kl permutation matrix satisfying Kk,l vec (A) = vec
(
AT
)

for all matrices A ∈ C
k×l.



Submitted 18.04.2005 to IEEE Transactions on Wireless Communications 13

(19), (20), and (21) can be used in a fixed point iteration for finding the precoder that solves Problem 1.

Notice that, the positive constants µ′ and µ are in general different. When the fixed point iterations were

used to find solutions, convergence was always observed.

VII. RESULTS AND COMPARISONS

Comparisons are made against a system using trivial precoding, i.e., F =
√

P
Kaσ2

xMt
IMt and the system

minimizing an upper bound of the PEP [9]. In the simulations, σ2
x = 1/2, P = 1, and Mr = 6.

Scenario 1: The following parameters are used in Scenario 1: The signal constellation was 8-PAM.

The OSTBC C(x) = GT
4 in [13] was used, such that a = 2, K = Mt = B = 4, and N = 8. Let the

correlation matrix R be given by (R)k,l = 0.9|k−l|, where the notation (·)k,l picks out element with row

number k and column number l.

Scenario 2: The OSTBC C(x) = GT
2 in [13] was used, such that a = 1 and K = Mt = B = N = 2.

Let the correlation matrix R be given by (13) with Mt = 2, Rr0 = IMr , and Rr1 = 1Mr×Mr . 9-QAM

was used.

Scenario 3: The OSTBC C(x) = GT
4 in [13] was used, such that a = 2, K = Mt = B = 4, and

N = 8. Let the correlation matrix R be given by (2) with (Rt)k,l = 0.5|k−l| and (Rr)k,l = ρ|k−l|, where ρ

is a scalar. In [4], [5], the optimization criterion used was an upper bound of the pairwise error probability

when the Kronecker model is valid with Rr = IMr . If the notation used in this article is used the criterion

used in [4], [5] can be written as det
(
IMt + δgR

1/2
t FF HR

1/2
t

)
. In [9], this criterion was extended to any

R, and it is equivalent to maximizing det (IMtMr + δgΦ). Let SNR = 10 dB and 9-QAM constellation

was used.

Figures 3 and 4 show the SER versus SNR performance for Scenario 1 and 2, respectively, for the

trivial precoder, the minimum upper bound PEP precoder [9], and the proposed minimum SER precoder

in Theorem 5. For Scenario 2, the analytical precoder in Theorem 4 is also shown. From Figure 3, it

is seen that the proposed minimum SER precoder outperforms the trivial precoder system systems for

all values of SNR, however, the performance of the proposed system is similar to the minimum PEP

precoder for low and high values of SNR. For moderate values of SNR, a gain up to 0.13 dB can be

achieved, as seen from magnified version of the results within Figure 3. In Figure 4, the performance of

the minimum SER, PEP and the precoder in Theorem 4 are indistinguishable in this example, and the

performance of these three precoders are up to 1 dB better than the trivial precoder.
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In Figure 5, the SER versus ρ performance of the systems are shown for Scenario 3. The proposed

minimum SER precoder performs best, however, the maximum determinant precoder in [9] performs very

close to the minimum SER coder. It is observed from Figure 5, that when the R = 1Mr×Mr , i.e., ρ = 1,

then the trivial precoder performs better than the precoder in [4], [5] which was designed based on the

transmitter correlation only.

Monte Carlo simulations verify the exact theoretical SER expressions.

VIII. CONCLUSIONS

For an arbitrary given OSTBC, exact SER expressions, which are easy to evaluate, have been derived

for a precoded MIMO system with arbitrary joint correlations in the transmitter and the receiver, for a

ML receiver. Several key properties of the optimal precoder were derived. In particular, we show that

receive correlation has an impact on precoding in general, to the sole exception of the case with zero

transmit correlation and Kronecker-based receiver correlation. In the special case of cooperative diversity

with two transmitters, we present a closed-form precoder which approximates well the optimal precoder.

In the general case, an iterative method was proposed for finding the minimum SER precoder for M-PSK,

M-PAM, and M-QAM signaling.

APPENDIX I

PROOF OF LEMMA 1

Proof: Let F be an optimal solution of Problem 1 and W ∈ CB×B be an arbitrary unitary matrix.

It is then seen by insertion of FW as the precoder that the objective function and the power constraint

are unaltered by the unitary matrix.

APPENDIX II

PROOF OF PROPOSITION 1

Proof: Let B = Mt and assume that the singular value decomposition of the optimal precoder can

be expressed as: F = V 0ΣV H
1 , where V i ∈ CMt×Mt is unitary and the Mt × Mt matrix Σ contains

the (non-negative) singular values of the precoder on its main diagonal and zeros elsewhere. It follows

from Lemma 1, that the precoder FV 1V
H
0 = V 0ΣV H

0 is also optimal. But this precoder is Hermitian.

Symmetry follows in a similar way since FV 1V
T
0 = V 0ΣV T

0 is also optimal and symmetric.
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APPENDIX III

PROOF OF PROPOSITION 2

Proof: Let SNR = P/N0 → ∞. By studying the expressions for SER in (9), (10), and (11), it

follows that the identity matrices inside the determinants in these equations can be eliminated if R is

non-singular. Then, the problem can be rewritten as finding the maximum of det (Φ) under the power

constraint. This problem is again equivalent to maximize det
(
FF H

)
subject to Tr

{
FF H

}
= P

aKσ2
x
. It

can be shown that the solution of this symmetrical equivalent problem is the trivial precoder.

APPENDIX IV

PROOF OF PROPOSITION 3

Proof: Let FF H = UFFHΛFFHUH
FFH be the eigen-decomposition of FF H . Observe that R =

IMtMr = IMt ⊗ IMr . For M-PAM and M-PSK signal constellations, the optimization problem can be

formulated as to find the minimum of∫ θmax

θmin

dθ

det
(
IMt ⊗ IMr + δg

sin2 θ

(
F ∗F T

)⊗ IMr

) =

∫ θmax

θmin

dθ

detMr
(
IMt + δg

sin2 θ
F ∗F T

)
=

∫ θmax

θmin

dθ

detMr
(
IMt + δg

sin2 θ
ΛFFH

) , (22)

under the constraint that ‖F ‖2
F = P

Kaσ2
x

= Tr {ΛFFH}. This is a symmetrical problems where all the

independent variables can be interchanged without altering the objective function and the constraint. For

this reason, in the optimum, all independent variables will be equal in the optimum point. Because of

the power constraint, the optimal solution can be written as: FF H = P
Kaσ2

xMt
IMt, and then the results

follows from Lemma 1 for M-PSK and M-PAM signaling. For M-QAM signaling a similar proof can

be given with the only difference that the objective function has two integrals with similar form.

APPENDIX V

PROOF OF PROPOSITION 4

Proof: Let rank (R) = d, and let the eigen-decomposition of R be given by:

R = UΛUH = [U+ U 0]

⎡
⎢⎣ Λ+ 0d×(MtMr−d)

0(MtMr−d)×d 0(MtMr−d)×(MtMr−d)

⎤
⎥⎦
⎡
⎢⎣ UH

+

U 0

⎤
⎥⎦ , (23)

where Λ+ of size d × d, contains the positive eigenvalues of R, the MtMr × d matrix U+ contains the

normalized eigenvectors corresponding to the positive eigenvalues, and U 0 of size MtMr × (MtMr − d),
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contains the normalized eigenvectors corresponding the the eigenvalue 0. The eigen-decomposition of

R1/2 follows from (23), and with this, the integral inside the SER expression can be written as∫ θmax

θmin

dθ

det
(
IMtMr + δg

sin2 θ
R1/2

[(
F ∗F T

)⊗ IMr

]
R1/2

)
=

∫ θmax

θmin

dθ

det

⎛
⎜⎝Id + δg

sin2 θ

[
Λ

1/2
+ 0d×(MtMr−d)

]
UH

[(
F ∗F T

)⊗ IMr

]
U

⎡
⎢⎣ Λ

1/2
+

0(MtMr−d)×d

⎤
⎥⎦
⎞
⎟⎠

. (24)

The diversity is found by letting SNR → +∞. This implies that in the matrix sum within the determinant

of (24), the identity matrix can be eliminated and (24) approaches:∫ θmax

θmin

dθ

det

⎛
⎜⎝ δg

sin2 θ

[
Λ

1/2
+ 0d×(MtMr−d)

]
UH
[(

F ∗F T
)⊗ IMr

]
U

⎡
⎢⎣ Λ

1/2
+

0(MtMr−d)×d

⎤
⎥⎦
⎞
⎟⎠

= δ−d

∫ θmax

θmin
sin2d θdθ

det

⎛
⎜⎝g
[
Λ

1/2
+ 0d×(MtMr−d)

]
UH

[(
F ∗F T

)⊗ IMr

]
U

⎡
⎢⎣ Λ

1/2
+

0(MtMr−d)×d

⎤
⎥⎦
⎞
⎟⎠

, (25)

which shows that SNR is proportional with δ−d. This means that the diversity of the system with a

precoder satisfying rank
(
F ∗F T

)
= rank (F ) = Mt is d = rank (R).

Remark 3: The expression in (25) gives an asymptotic expression for the SER for large values of SNR

and it shows how SER depends on the correlation matrix R through U and Λ
1/2
+ for high values of SNR.

(25) can be used to find the explicit dependency of SER on the transmitter and receiver correlation matrix

in the Kronecker model (2) for high SNR values. For full ranked matrices R, the asymptotic expression

in (25) can be simplified.

APPENDIX VI

PROOF OF PROPOSITION 5

Proof: If B < Mt, then rank (F ) = rank
(
F ∗F T

) ≤ B < Mt. This means that rank(Φ) =

Mr rank
(
F ∗F T

)
< MrMt, and, therefore, diversity is lost in comparison the case where B = Mt.

APPENDIX VII

PROOF OF THEOREM 1

First, a lemma is derived to help deriving the main result.
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Lemma 2: Let A(θ) ∈ CN×N be a positive definite matrix for all θ ∈ [θmin, θmax], and let the operator

dg : CN×N → CN×N return the matrix with zero off-diagonal elements and with the same diagonal

elements as the matrix it is applied to. Then the following inequality holds:∫ θmax

θmin

dθ

det (A(θ))
≥
∫ θmax

θmin

dθ

det (dg (A(θ)))
, (26)

with equality if and only if A(θ) is diagonal for all θ ∈ [θmin, θmax].

Proof: Since A(θ) is positive definite, it follows from Theorem 1.28 in [14] that

det (A(θ)) ≤ det (dg (A(θ))) , (27)

for all θ ∈ [θmin, θmax] and with equality if and only if A(θ) is diagonal. Since A(θ) is positive definite,

(27) is equivalent to
1

det (A(θ))
≥ 1

det (dg (A(θ)))
, (28)

for all θ ∈ [θmin, θmax] and equality is achieved if and only if A(θ) is a diagonal matrix. Since (28) is valid

for all θ ∈ [θmin, θmax], it follows by considering integrals as a sum, that (26) holds. If A(θ) is diagonal

for all θ ∈ [θmin, θmax], it follows from Theorem 1.28 in [14] that (26) holds with equality. Assume now

that (26) holds with equality. From (28), it follows that one of the integrands are always less than or equal

to the other integrand for all values of θ. Then, the only way the two integrals can be equal is that the

integrands are equal for all values of θ ∈ [θmin, θmax].

Proof: Let the receiver correlation matrix have the following eigen-decomposition: Rr = U rΛrU
H
r ,

where U r ∈ CMr×Mr is unitary and and Λr is diagonal of size Mr ×Mr. The integral in the SER, using

R from (2), can be rewritten as:∫ θmax

θmin

dθ

det
(
IMtMr + δg

sin2 θ
Φ
) =

∫ θmax

θmin

dθ

det
(
IMtMr + δg

sin2 θ

[
Λ

1/2
t UT

t F ∗F T U ∗
tΛ

1/2
t

]
⊗ Λr

) . (29)

Using Lemma 2, it is seen that the SER is minimized if and only if Λ
1/2
t UT

t F ∗F T U ∗
tΛ

1/2
t is diagonal.

Therefore, it follows that there is no loss of optimality to restrict F ∗F T to the following form

F ∗F T = U ∗
t DUT

t , (30)

where D is a diagonal Mt × Mt matrix. Since F is of size Mt × B is satisfying (30), it is seen that the

theorem follows with (∆)i,i =
√

(D)i,i.



Submitted 18.04.2005 to IEEE Transactions on Wireless Communications 18

APPENDIX VIII

PROOF OF THEOREM 2

We need a lemma to establish the proof below. First, let the eigenvalue decomposition of Rri
be given

by Rri
= V ri

Λri
V H

ri
, where V ri

∈ C
Mr×Mr is unitary and Λri

∈ R
Mr×Mr is diagonal with non-negative

diagonal elements. It follows that the eigenvalue decomposition of R = V RΛRV H
R is given by the

matrices

V R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V r0 0Mr×Mr · · · 0Mr×Mr

0Mr×Mr V r1 · · · 0Mr×Mr

...
...

. . .
...

0Mr×Mr 0Mr×Mr · · · V rMt−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, ΛR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Λr0 0Mr×Mr · · · 0Mr×Mr

0Mr×Mr Λr1 · · · 0Mr×Mr

...
...

. . .
...

0Mr×Mr 0Mr×Mr · · · ΛrMt−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

Lemma 3: Let the correlation matrix R satisfy (13) and let W ∈ C
Mt×Mt . The matrix given by

B � δg
sin2 θ

Λ
1/2
R V H

R [W ⊗ IMr ]V RΛ
1/2
R is diagonal if and only if W is diagonal.

Proof: Block element number (k, l) of size Mr×Mr of B is given by δg
sin2 θ

Λ1/2
rk

V H
rk

V rl
Λ1/2

rl
(W )k,l.

From this expression it is seen that B is diagonal if and only if W is diagonal.

Proof: The SER objective function that should be minimized is proportional to:∫ θmax

θmin

dθ

det
(
IMtMr + δg

sin2(θ)
Λ

1/2
R V H

R

[(
F ∗F T

)⊗ IMr

]
V RΛ

1/2
R

) . (32)

By using (32) together with Lemmas 3 and 2, it follows that that SER is minimized under the power

constraint if and only if F ∗F T is diagonal. Hence, from Lemma 1, it follows that F is diagonal. From

the expressions for SER and the power constraint, it is seen that without loss of optimality, the diagonal

elements of F can be chosen real and non-negative.

APPENDIX IX

PROOF OF THEOREM 3

Proof: The correlation matrix is given by (13) with equal block diagonal element matrices. Let

Rr = V rΛrV
H
r . From Theorem 2, it follows that F can be chosen diagonal without loss of optimality.

By inserting a diagonal F ∗F T into (32), the goal is to minimize:∫ θmax

θmin

dθ∏Mt−1
i=0 det

(
IMr + δg

sin2(θ)

(
F ∗F T

)
i,i

Λr

) , (33)

subject to the power constraint Tr
{
F ∗F T

}
= P/ (Kaσ2

x). This is a symmetrical optimization problem in

the unknown diagonal elements of the precoder F , it follows that all the diagonal elements of F should

be made equal and then the theorem follows from the power constraint.
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APPENDIX X

PROOF OF THEOREM 4

Proof: We rewrite the cost function in Problem 2 in terms of θ (unconstrained):

J(θ) =

Mr−1∑
j=0

[(
cos2(θ)λr0j

− 1

2

)2

+

(
sin2(θ)λr1j

− 1

2

)2
]

. (34)

The minimum is reached when ∂J
∂θ

= 0. By eliminating false uninteresting extremal points, we find:
Mr−1∑
j=0

(
cos2(θ)λr0j

− 1

2

)
λr0j

=
Mr−1∑
j=0

(
sin2(θ)λr1j

− 1

2

)
λr1j

, which, knowing
Mr−1∑
j=0

λr0j
=

Mr−1∑
j=0

λr1j
=

Mr, gives the result in (15). Since the right hand side of (15) is positive and the function tan(·) is

periodic with period π, it is enough to consider θ ∈ [0, π
2

]
.

APPENDIX XI

PROOF OF THEOREM 5

Proof: The necessary condition for the optimality of Problem 1 is found by setting the derivative

of the Lagrangian in (16) with respect to vec (F ∗) equal to zero. Finding the derivative with respect to

the complex valued vector vec (F ∗) can be done by generalizing the works in [14], [25]. The following

two expressions, which are found after several matrix manipulations, are useful:
∂

∂ vec (F ∗)
Tr
{
FF H

}
=vec (F ) , (35)

∂

∂ vec (F ∗)

∫ θmax

θmin

dθ

det
(
IMtMr + δg

sin2 θ
Φ
) = − δg

[
F T ⊗ IMt

]
Π
[
R1/2 ⊗

(
R1/2

)∗]

×
∫ θmax

θmin

vec
([

IMtMr + δg
sin2 θ

Φ∗]−1
)

sin2 θ det
(
IMtMr + δg

sin2 θ
Φ
)dθ. (36)

The necessary condition for optimality is found by utilizing the results from (35) and (36) and setting

the derivative of the Lagrangian in (16) equal to zero. If this is done, and scalar factors are collected into

the scalar named µ, the results in (19), (20), and (21) are found. Since the precoder matrix F should

be scaled according to the power constraint in Problem 1, it is not necessary to decide the exact value

of the scalar µ. This scalar can be found by adjusting the norm of the precoder according to the power

constraint after each time the fixed point iteration is used.
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Fig. 1. (a) Block model of the linear precoded OSTBC MIMO system. (b) Equivalent SISO system.
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Fig. 2. Illustration of non-Kronecker correlation in distributed space time coding. Circles indicate scatterers. Unlike Access point 0,

Access point 1 experiences small angle spread at the receiver, yielding high receive correlation. The two access points, remotely located, are

uncorrelated.
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Fig. 3. Scenario 1: SER versus SNR performance of the proposed minimum SER precoder −+− in Theorem 5, the trivial precoder −◦−,

and the minimum PEP precoder −×− proposed in [9]. A magnified portion of the curves is shown to illustrate the differences in performance.
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Fig. 4. Scenario 2: SER versus SNR performance of the proposed precoder −+− in Theorem 5, the PEP precoder −×−, the precoder

in Theorem 4 −�−, and the trivial precoder − ◦ −.
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Fig. 5. Scenario 3: The SER versus ρ performances are shown for the following four systems: The proposed minimum SER precoder: −◦−
in Theorem 5, the PEP precoder −×− in [9], the analytical precoder −�− in [4], [5], and the trivial precoder − + −.


