
On Variable-Scale Piecewise Stationary Spectral Analysis of Speech Signals for
ASR

Vivek Tyagi, Christian Wellekens

Institute Eurecom, Sophia Antipolis, France
Vivek.Tyagi@eurecom.fr, Christian.Wellekens@eurecom.fr
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Abstract
A fixed scale (typically 25ms) short time spectral analysis of
speech signals, which are inherently multi-scale in nature (typ-
ically vowels last for 40-80ms while stops last for 10-20ms),
is clearly sub-optimal for time-frequency resolution. Based on
the usual assumption that the speech signal can be modeled by
a time-varying autoregressive (AR) Gaussian process, we es-
timate the largest piecewise quasi-stationary speech segments,
based on the likelihood that a segment was generated by the
same AR process. This likelihood is estimated from the Linear
Prediction (LP) residual error. Each of these quasi-stationary
segments is then used as an analysis window from which spec-
tral features are extracted. Such an approach thus results in a
variable scale time spectral analysis, adaptively estimating the
largest possible analysis window size such that the signal re-
mains quasi-stationary, thus the best temporal/frequency res-
olution tradeoff. The speech recognition experiments on the
OGI Numbers95 database, show that the proposed variable-
scale piecewise stationary spectral analysis based features in-
deed yield improved recognition accuracy in clean conditions,
compared to features based on minimum cross entropy spec-
trum [1] as well as those based on fixed scale spectral analysis.

1. Introduction
Most of the Automatic Speech Recognition (ASR) acoustic fea-
tures, such as Mel-Frequency Cepstral Coefficient (MFCC) or
Perceptual Linear Prediction (PLP), are based on some sort of
representation of the smoothed spectral envelope, usually esti-
mated over fixed analysis windows of typically 20ms to 30ms
of the speech signal [12]. Such analysis is based on the assump-
tion that the speech signal can be assumed to be quasi-stationary
over these segment durations. However, it is well known that
the voiced speech sounds such as vowels are quasi-stationary
for 40ms-80ms while, stops and plosive are time-limited by less
than 20ms [12]. Therefore, it implies that the spectral analysis
based on a fixed size window of 20ms-30ms has some limita-
tions, including:

� The frequency resolution obtained for quasi-stationary
segments (QSS) longer than 20ms is quite low compared
to what could be obtained using larger analysis windows.

� In certain cases, the analysis window can span the transi-
tion between two QSSs, thus blurring the spectral prop-
erties of the QSSs, as well as of the transitions. Indeed,
in theory, Power Spectral Density (PSD) cannot even be
defined for such non stationary segments [7]. Further-
more, on a more practical note, the feature vectors ex-
tracted from such transition segments do not belong to
a single unique (stationary) class and may lead to poor
discrimination in a pattern recognition problem.

In this work, we make the usual assumption that the piece-
wise quasi-stationary segments (QSS) of the speech signal can
be modeled by a Gaussian AR process of a fixed order � as
in [2, 3, 9, 10]. We then formulate the problem of detect-
ing QSSs as a Maximum Likelihood (ML) detection problem,
defining a QSSs as the longest segment that has most prob-
ably been generated by the same AR process. As is well
known, given a � ��� order AR Gaussian QSS, the Minimum
Mean Square Error (MMSE) linear prediction (LP) filter param-
eters � ���
	������������������ ��������� are the most “compact” representation
of that QSS amongst all the � ��� order all pole filters [7]. In other
words, the normalized “coding error”1 is minimum amongst all
the � ��� order LP filters. When erroneously analyzing two dis-
tinct � ��� order AR Gaussian QSSs in the same non-stationary
analysis window, it can be shown that the “coding error” will
then always be greater than the ones resulting of QSSs analyzed
individually in stationary windows[11]. As further explained in
the next sections, this forms the basis of our criteria to detect
piecewise quasi-stationary segments. Once the “start” and the
“end” points of a QSS are known, all the speech samples com-
ing from this QSS are analyzed within that window, resulting in
(variable-scale) acoustic vectors.

Our algorithm is thus reminiscent of the likelihood ratio test
based ML segmentation algorithm derived by Brandt [9] and
later on used in [10]. In [10], the author has illustrated certain
speech waveforms with segmentation boundaries overlaid. The
validity of their algorithm is shown by a segmentation exper-
iment, which on an average, segments phonemes into ��� � seg-
ments. This result is quite useful as a pre-processor for the man-
ual transcription of speech signals. However, the author in [10]
did not discuss or extend the ML segmentation algorithm as a
variable-scale quasi-stationary spectral analysis technique suit-
able for ASR, as done in the present work.

Before proceeding further, however, we feel necessary to
briefly discuss certain inconsistencies between variable-scale
spectral analysis and state-of-the-art Hidden Markov models
ASR using Gaussian mixture models (HMM-GMM). HMM-
GMM systems typically use spectral features based on a con-
stant window size (typically ������� ) and a constant shift size
(typically 	�� �!� ). The shift size determines the Nyquist fre-
quency of the cepstral modulation spectrum [6], which is typi-
cally measured by the delta features of the static MFCC or PLP
features. In a variable-scale piecewise quasi-stationary analy-
sis, the shift size should preferably be equal to the size of the
detected QSS. Otherwise, if the shift size is x% of the duration
of the QSS, then the next detected QSS will be the same but of
duration �
	����#"%$&� % and the following one will be of duration
�
	����'"(� $�� % and so on until we have shifted past the entire

1The power of the residual signal normalized by the number of sam-
ples in the window



duration of the QSS. This results in the undesirable effect that
the same QSS gets analyzed by successively smaller windows,
hence increasing the variance of the feature vector of this QSS.
On the other hand, the use of a shift size equal to the variable
window size will change the Nyquist frequency of the cepstral
modulation spectrum [6]. Therefore, the modulation frequency
pass-band of the delta filters [6] will vary from frame to frame
and may suffer from aliasing for shift sizes in excess of ��� �!� .

In [4], Atal has described a temporal decomposition tech-
nique to represent the continuous variation of the LPC parame-
ters as a linearly weighted sum of a number of discrete elemen-
tary components. These elementary components are designed
such that they have the minimum temporal spread (highly local-
ized in time) resulting in superior coding efficiency. However,
the relationship between the optimization criterion of “the mini-
mum temporal spread” and the quasi-stationarity is not obvious.
Therefore, the discrete elementary components are not neces-
sarily quasi-stationary and vice-versa. In [3], Svendsen et al
have proposed a ML segmentation algorithm using a single
fixed window size for speech analysis, followed by a cluster-
ing of the frames which were spectrally similar for sub-word
unit design. We emphasize here that this is different from the
approach proposed here where we use variable size windows
to achieve the objective of piecewise quasi-stationary spectral
analysis.

The main contribution of the present paper is to demon-
strate that the variable-scale QSS spectral analysis technique
can possibly improve the ASR performance as compared to
the fixed scale spectrum analysis. We identify the above men-
tioned problems and make certain engineering design choices
to overcome these problems. Moreover, we show the relation-
ship between the maximum likelihood QSS detection algorithm
and the well known spectral matching property of the LP er-
ror measure [5]. Finally, we do a comparative study of the
proposed variable-scale spectrum based features and the min-
imum cross-entropy time-frequency distributions developed by
Loughlin et al [1].

2. ML Detection of the change-point in an
AR Gaussian random process

Consider an instance of a � � � order AR Gaussian pro-
cess, x[n]  ��� ��	��� � whose generative LP filter param-
eters can either be A ��� ��	���	���
	��� �	��������������� �	� ������� or can
change from A 
�� ��	����
��
	�����
������������ � ��
 ������� to A ���
��	��� � �
	��� � � ����������� � � � ������� at time � 
 where � 
 � ��	��� � . As
usual, the excitation signal is assumed to be drawn from a white
Gaussian process and its power can change from ������
 to����� � . The general form of the Power Spectral Density (PSD)
of this signal is then known to be����� ���&��� � �� 	 "�� �!#" 
 ���%$��	&('*) �
",+ �.-/$0�&� � � (1)

where ���%$�� s are the LPC parameters. The hypothesis test con-
sists of:

� H � : No change in the PSD of the signal $ � � � over all��� ��	��� � , LP filter parameters are A � and the excita-
tion (residual) signal power is ��� .

� H 
 : Change in the PSD of the signal $ � � � at � 
 , where� 
 � ��	��� � , LP filter parameters change from A 
 to A �
and the excitation(residual) signal power changes from� 
 to � � .

Let, 1A � denote the maximum likelihood estimate (MLE) of the
LP filter parameters and 1� � denote the MLE of the residual sig-
nal power under the hypothesis H � . The MLE estimate of the
filter parameters is equal to their MMSE estimate due to the
Gaussian distribution assumption [2] and, hence, can be com-
puted using the Levinson Durbin algorithm [7] without signifi-
cant computational cost.

Let x 
 denote � $ �
	����$ ���������� � $ � � 
 ��� and x � denote � $ � � 
�2
	��������� $ �3�!��� . Under hypothesis H 
 , ( 1A 
 , 1�4
 ) are the MLE of
(A 
 , � 
 ) estimated on x 
 , and ( 1A � , 1� � ) are the MLE of (A � ,�� ) estimated on x � , where x 
 and x � have been assumed to be
independent of each other. A Generalized Likelihood Ratio Test
(GLRT) [11] would then pick hypothesis H 
 if57698;: � x ��� 5<6=8 � � � x 
 � 1A 
  1� 
 � � � x � � 1A �  1� � �� � x � 1A �� 1����� �?>A@ (2)

where @ is a decision threshold that will have to be tuned on
some development set. In [8], we have shown that (2) simplifies
to the following,576=8?: � x ��� 	

�
576=8CB 1�4D�1�FEHG
 1�JI DLK EMG�N� O (3)

In the present form, the GLRT
576=8?: � x � has now a natu-

ral interpretation. Indeed, if there is a transition point in the
segment x then it has, in effect, ��� degrees of freedom. Under
hypothesis H � , we encode x using only � degrees of freedom
(LP parameters 1A � ) and, therefore, the coding (residual) error1� �� will be high. However, under hypothesis H 
 , we use ���
degrees of freedom (LP parameters 1A 
 and 1A � ) to encode x.
Therefore, the coding (residual) errors 1� �
 and 1� �� can be min-
imized to reach the lowest possible value.2 This will result in: � x �?> 	 . On the other hand, if there is no AR switching point
in the segment x then it can be shown that, for large � 
 and � ,
the coding errors are all equal ( 1� �� � 1� �
 � 1� �� ). This will result
in
: � x �JP 	 .
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Figure 1: Typical plot of the Generalized log likelihood ra-
tio test (GLRT) for a speech segment. The sharp downward
spikes in the GLRT are due to the presence of a glottal pulse
at the beginning of the right analysis window (x � ). The GLRT
peaks around the sample 500 which marks as a strong AR model
switching point

An example is illustrated in Figure 1. The top pane shows
a segment of a voiced speech signal. In the bottom figure, we

2When QA 
 and QA � are estimated, strictly based on the samples from
the corresponding quasi-stationary segments.



plot the GLRT as the function of the hypothesized change over
point � . Whenever, the right window i.e the segment x � spans
the glottal pulse in the beginning of the window, the GLRT ex-
hibits strong downward spikes which is due to the fact that the
LP filter cannot predict large samples in the beginning of the
window. However, these downward spikes do not influence our
decision significantly as we are interested in large positive value
of the GLRT to detect a model change over point. The minimum
sizes of the left and the right windows are 	���� and 	���� samples
respectively. This explains the zero value of the GLRT at the be-
ginning and the end of the whole test segment. The GLRT peaks
around sample � ��� which marks a strong AR model switching
point.

3. Relation of GLRT to Spectral Matching
As is well known the LP error measure possesses the spectral
matching property [5]. Specifically, given a speech segment x,
let its power spectrum (periodogram) be denoted by X ������� � .
Let the all pole model spectrum of the segment x be denoted as1X � ��� �	� � . Then it can be shown that the MMSE error � �� of the
LP filter estimated over the entire segment x is given by [5]� �� � 
��K � X ��� �	� �1X � ��� ��� ���� where, (4)1X � ��� �	� � � 	� 	 "�� �!#" 
 �*���%$ � & '	) �
",+ � -F$0�&� � � (5)

Therefore minimizing the residual error � �� is equivalent to the
minimization of the integrated ratio of the signal power spec-
trum X ��� ��� � to its approximation 1X � ��� ��� � [5]. Substituting (4)
in (3) we obtain,57698;: � x � � 	

�
576=8 ��� �K � X I������ N�

X � I�� ��� N ���� D��� �K � X G I�� ��� N�
X G I�� ��� N ���� EHG ��� �K � X � I�� ��� N�

X � I�� ��� N ���� D K EHG
(6)

where, X ��� ��� � , X 
���� ��� � and X ����� ��� � are the power spectra
of the segments x, x 
 and x � respectively. Similarly 1X � ��� ��� � ,1X 
 ��� �	� � and 1X � ��� �	� � are the MMSE � ��� order all-pole model
spectra estimated over the segments x, x 
 and x � respectively.
Therefore, 1X � ���	�	��� , 1X 
����	�	� � and 1X �����	�	�&� are the best spec-
tral matches to their corresponding power spectra. One way of
interpreting (6) is that it is a measure of the relative goodness
between the best spectral match achieved by modeling x as a
single QSS and the best spectral matches obtained by assum-
ing x to consist of two distinct QSS, namely x 
 and x � . This
is further explained as follows. If x 
 and x � are indeed two
distinct QSS, then X 
���� ��� � and X ����� �	� � will be quite differ-
ent and X ��� ��� � will be a gross average of these two spectra. In
other words, the frequency support of X ��� �	� � will be a union of
those of the X 
���� ��� � and X ����� �	� � . 1X 
���� ��� � and 1X ����� ��� � , hav-
ing � poles each, will match their corresponding power spectra
reasonably well, resulting in a lower value of the denomina-
tor in (6). However, 1X � ���	�	� � will be a relatively poorer spec-
tral match to X ��� �	� � as it has only � poles to account for the
wider frequency support. Therefore we incur a higher spectral
mismatch by assuming x to be a single QSS when in fact it is
composed of two distinct QSS x 
 and x � . This results in the
GLRT

576=8?: � x � taking up a high value. Whereas if x 
 and x �
are the instances of the same quasi-stationary process, then so is
x. Therefore X 
 ��� ��� � , X � ��� �	� � and X ��� ��� � are nearly the same

with similar all-pole models, resulting in a value of the GLRT
close to zero. The above discussion points out to the fact that
the QSS analysis based on the proposed GLRT is constantly
striving to achieve a better time varying spectral modeling of
the underlying signal as compared to single fixed scale spectral
analysis.

4. Experiments and Results
We have used the GLRT L(x) in (3) to perform QSS spectral
analysis of speech signals for ASR applications. We initialize
the algorithm with a left window size W L = 20ms and a right
window size W R = 12.5ms. We compute their corresponding
MMSE residuals and the MMSE residual of the union of the two
windows. Then, the GLRT is computed using (3) and is com-
pared to the threshold. The choice of the threshold @ ����� � was
obtained by a visual inspection of the quasi-stationarity of the
segmented speech signal as returned by the algorithm. The de-
tected boundaries of the QSSs, using threshold @ ��� � � , can be
found at our web-site.3 Realizing that the resulting segmenta-
tion corresponded to reasonably quasi-stationary segments, we
adopted the threshold value @�� � � � for all the experiments re-
ported in this paper. In general, the ASR results are slightly sen-
sitive to the threshold, although not in a huge way. If the GLRT
is greater than the threshold @ , W L is considered the largest pos-
sible QSS and we obtain a spectral estimate using all the sam-
ples in W L. Otherwise,W L is incremented by INCR=1.25ms
and the whole process is repeated until GLRT exceeds @ or W L
becomes equal to the maximum window size WMAX= �����!� . The
computation of a MFCC feature vector from a very small seg-
ment (such as 10ms) is inherently very noisy.4 Therefore, the
minimum duration of a QSS as detected by the algorithm was
constrained to be � ���!� . Throughout the experiments, a fixed
LP order � � 	�! was used. To avoid fluctuating Nyquist fre-
quency of the cepstral modulation spectrum[6], a fixed shift size
of 	���� � ��� was used in the algorithm. As explained in the Sec-
tion (1), this sometime resulted in the undesirable effect that
the same QSS gets analyzed by progressively smaller windows.
To alleviate this problem, the zeroth cepstral coefficient "�� � � ,
which is a non-linear function of the windowed signal energy
and, hence, of the window size, was normalized such that its
dependence on the window size is minimized.

In order to assess the effectiveness of the proposed algo-
rithm, speech recognition experiments were conducted on the
OGI Numbers corpus. This database contains spontaneously
spoken free-format connected numbers over a telephone chan-
nel. The lexicon consists of 31 words. Figure (2) illustrates the
distribution of the QSSs as detected by the proposed algorithm.
Nearly !$#�% segments were analyzed with the smallest window
size of � ����� and they mostly corresponded to short-time lim-
ited segments. However, voiced segments and long silences
were mostly analyzed by using longer windows in the range��� �!� "������!� . The short peak at 60ms is due to the accumu-
lated value over all the segments that should have been longer
than 60ms but were constrained by our choice of the largest
window size.

Throughout the experiments, MFCC coefficients and their
temporal derivatives were used as speech features. However,
five feature sets were compared:

1. [39 dim. MFCC:] computed over a fixed window of
length 20ms.

3http://www.eurecom.fr/ & tyagi/segmentation.html
4Due to very few samples involved in the Mel-filter integration.
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Figure 2: Distribution of the QSS window sizes detected and
then used in the training set

2. [39 dim. MFCC:] computed over a fixed window of
length 50ms.

3. [78 dim. Concatenated MFCC:] a concatenation of the
above two feature vectors.

4. [Minimum cross entropy,39 dim MFCC:] MFCC com-
puted from the geometric mean of the power spectra
computed from 20ms, 30ms, 40ms and 50ms long win-
dows.

5. [Variable-scale QSS MFCC+Deltas:] For a given frame,
the window size is dynamically chosen using the pro-
posed algorithm ensuring that the windowed segment is
quasi-stationary.

In [1], Loughlin et al proposed using a geometric mean of
multiple spectrograms of different window sizes to overcome
the time-frequency limitation of any single spectrogram. They
showed that combining the information content from multiple
spectrograms in form of their geometric mean, is optimal for
minimizing the cross entropy between the multiple spectra. We
have followed their approach to derive MFCC features from
the geometric mean of the multiple power spectra computed
over varying window sizes, specifically 20ms, 30ms, 40ms and
50ms.

Hidden Markov Model and Gaussian Mixture Model
(HMM-GMM) based speech recognition systems were trained
using public domain software HTK on the clean training set
from the original Numbers corpus. The speech recognition re-
sults in clean conditions for various spectral analysis techniques
are given in table 1. The fixed scale MFCC features using 20ms
and 50ms long analysis windows have 5.8% and 5.9% word er-
ror rate (WER) respectively. The concatenation of MFCC fea-
ture vectors derived from 20ms and 50ms long windows has a
5.7% WER and it has twice the number of HMM-GMM pa-
rameters as compared to the rest of the systems5. The slight
improvement in this case may be due to the multiple scale infor-
mation present in this feature, albeit in an ad-hoc way. The min-
imum cross-entropy MFCC features which were derived from
the geometric mean of the power spectra computed over 20ms,
30ms, 40ms and 50ms long analysis windows, have a WER
of 5.7%. The proposed variable-scale system which adaptively
chooses a window size in the range [20ms, 60ms], followed by
the usual MFCC computation, has a 5.0% WER. This corre-
sponds to a relative improvement of more than 10% over the
rest of the techniques

5Due to twice the feature dimension as compared to the rest of the
systems

Table 1: Word error rate in clean conditions

MFCC 20ms 5.8
MFCC 50ms 5.9
Concat. MFCC (20ms, 50ms) 5.7
Min. Cross entropy based MFCC 5.7
Proposed Variable-scale QSS MFCC 5.0

5. Conclusion
We have demonstrated that the variable-scale piecewise quasi-
stationary spectral analysis of speech signal can possibly im-
prove the state-of-the-art ASR. Such a technique can overcome
the time-frequency resolution limitations of the fixed scale spec-
tral analysis techniques. Comparisons were drawn with the
other competing multi-scale techniques such as the minimum
cross-entropy spectrum. The proposed technique led to the min-
imum WER as compared to the rest of the techniques.
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