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Microelectronics, Swisscom, Texas Instruments, Thales

1



Abstract

A £xed scale (typically 25ms) short time spectral analysis of speech signals, which
are inherently multi-scale in nature [7] (typically vowels last for 40-80ms while
stops last for 10-20ms), is clearly sub-optimal for time-frequency resolution. In
this work, we detect piecewise quasi-stationary speech segments based on the
likelihood of that segment which in turn is estimated from the linear prediction
(LP) residual error. A window size equal in length to that of the detected quasi-
stationary segment is used to obtain its spectral estimate. Such an approach adap-
tively chooses the largest possible window size such that the signal remains quasi-
stationary within this window and excludes the adjoining quasi-stationary segments
from this window. In experiments, it is shown that the proposed multi-scale piece-
wise stationary spectral analysis based features improve recognition accuracy in
clean conditions when compared directly to features based on £xed scale spectral
analysis.
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1 Introduction

Speech signals as many other signals are inherently multi-scale in nature, ow-
ing to contributions from events occurring with different localizations in time and
frequency. Therefore, signal analysis and modeling methods that represent the
measured signal at multiple scales are better suited for extracting information from
signal than methods that represent it at a single £xed scale.

Most of the front-ends (such as MFCC or PLP) used in current automatic
speech recognition systems (ASR), employ a smoothed spectral envelope estimated
over 20ms to 30ms of speech signal[10, 7]. This is based on the long-standing as-
sumption that the speech signal can be assumed to be quasi-stationary for these
durations. However, it is well known that the voiced speech sounds such as vowels
are quasi-stationary for 40ms-80ms while, stops and plosive are time-limited by
20ms [7]. Therefore, it implies that the spectral analysis based on a window of
single £xed size (20ms-30ms) has the following serious limitations:

• The frequency resolution obtained for speech segments which are quasi-
stationary for durations much longer than 20ms, is quite low as compared
to what one can obtain using longer windows.

• In certain cases, more than one quasi-stationary segment (QSS) might be
erroneously analyzed in the same analysis window (for instance, around the
transition points between two QSSs). Power spectral density (PSD) cannot
even be de£ned for such non stationary segments [1]. On a more practical
note, the feature vectors extracted from such non stationary segments do not
belong to a single unique class and may lead to poor discrimination in a
pattern recognition problem.

In this work, we make the assumption that the piecewise quasi-stationary seg-
ments (PQSS) of the speech signal can be modeled by a Gaussian AR process of
a £xed order ′p′ as in [2]. We formulate the problem at hand as a ML detection of
model change over point.1 As is well known, given a pth order AR Gaussian PQSS,
the minimum mean square error (MMSE) linear prediction (LP) £lter parameters
[a(1), a(2), ... a(p)] are the most “compact” representation of that PQSS amongst
all the pth order all pole £lters [1]. In other words, the normalized2 “coding error”
is minimum amongst all the pth order LP £lters. Now, consider a case when we
erroneously analyze two distinct pth order AR Gaussian PQSSs in the same non-
stationary analysis window. Then, it can be shown that the “coding error” in this
case is greater than the ones obtained when the two PQSSs are analyzed individ-
ually in stationary windows[6]. This is intuitively satisfying as in the former case
we are trying to encode ′2p′ free parameters (the LP £lter coef£cients of each of
the PQSS) using only p parameters (as the two distinct PQSS are now analyzed

1Equivalent to the detection of the transition point between the two adjoining PQSS.
2The power of the residual signal normalized by the number of samples in the window
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within the same window). Therefore higher coding error is expected in the former
case as compared to the optimal case when each PQSS is analyzed in a stationary
window. As it will be further explained in the later sections, this forms the basis of
our criteria to detect piecewise quasi-stationary segments. Once the “start” and the
“end” point of a PQSS are know, all the speech samples coming from this PQSS
are analyzed within the same window. This can be seen as locking the windows
to the PQSS which results in an adaptive dilation and shrinkage of the windows
depending on the temporal extent of the underlying PQSS.

In [2, 3], Svendsen et. al. proposed a ML segmentation algorithm for speech
signals. Their algorithm uses a single £xed window size for speech analysis and
then clusters the frames which are spectrally similar for sub-word unit design. We
emphasize that this is different from our technique where we use variable sized
windows to achieve the objective of piecewise quasi-stationary spectral analysis.
Recently, Achan et. al.[5] have proposed a segmental HMM for speech waveforms
which identi£es waveform samples at the boundaries between glottal pulse periods
with applications in pitch estimation and time-scale modi£cations.
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Figure 1: Exact detection of the model change over point for a 6th order AR Gaus-
sian process using Generalized log likelihood ratio test (GLRT).

This paper is divided into £ve sections. In Section 2, we formulate the ML de-
tection problem for identifying the transition from one PQSS to another. In Section
3, we apply the proposed algorithm to the real speech signals. The experimental
setup and results are described in Section 4.
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2 ML Detection of the change-point in an AR Gaussian
random process.

Consider an instance of a pth order AR Gaussian process, x[n], n ∈ [1, N ]
whose generative LP £lter parameters change from A1 = [a1(1), a1(2)....a1(p)] to
A2 = [a2(1), a2(2)....a2(p)] at time n0 where n0 ∈ [1, N ]. The excitation signal
power can also change from σ1 to σ2 The general form of the PSD of this signal is
well known to be,

Pxx(f) =
σ2
u

|1 −
∑P

p=1 a(p) exp(−j2πpf) |2
(1)

The hypothesis test consists of:

• H0: No change in the PSD of the signal x(n) during n ∈ [1, N ], LP £lter
parameters are A0=A1 and the excitation(residual) signal power is σ0 = σ1.

• H1: Change in the PSD of the signal x(n) at n0, where n0 ∈ [1, N ], LP £lter
parameters change from A1 to A2 and the excitation(residual) signal power
changes from σ1 to σ2.

Let, Â
0

denote the maximum likelihood estimate (MLE) of the LP £lter parameters
and σ̂0 denote the MLE of the residual signal power under the hypothesis H0. The
MLE estimate of the £lter parameters is equal to their MMSE estimate due to the
Gaussian distribution and hence can be computed by the Levinson Durbin algo-
rithm [1]. Let x1 denote [x(1), x(2), ...x(n0)] and x2 denote [x(n0 + 1), ...x(N)].

Under hypothesis H1, (Â
1
, σ̂1) are the MLE of (A1, σ1) based on x1, and (Â

2
, σ̂2)

are the MLE of (A2, σ2) based on x2. A generalized likelihood ratio test (GLRT)[6]
would decide H1 if,

L(x) =
p(x1|Â

1
, σ̂1)p(x2|Â

2
, σ̂2)

p(x|Â
0
, σ̂0)

> γ (2)

We note that the total number of samples in x1 and x2 are the same as in x0.
Therefore, their likelihoods can be compared directly in (2). Usually, the thresh-
old γ is experimentally tuned. Under the hypothesis H0 the entire segment x =

[x(1)...x(N)] is considered stationary and the MLE Â
0

is computed via the Levinson-
Durbin algorithm using all the samples in segment x. It can be shown that the MLE
σ̂0 is the power of the residual signal [6]. Under H1, we assume that there are two

distinct PQSS, namely x1 and x2. The MLE Â
1

and Â
2

are computed via the
Levinson-Durbin algorithm using samples from their corresponding PQSS. MLE
σ̂1 and σ̂2 are computed as the power of the corresponding residual signals. In fact,

p(x|Â
0
, σ̂0) is equal to the probability of residual signal reconstructed using £lter

parameters Â
0
. Therefore,
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p(x|Â
0
, σ̂0) = 1

(2πσ̂2
0
)N/2

exp( −1
2σ̂2

0

∑N
n=1(e

2
0(n)))

where e0(n) is the residual error and,

e0(n) = x(n) −
∑p

i=1 a
0(i)x(n− i), n ∈ [1, N ]

and σ̂2
0 = 1

N

∑N
n=1 e

2
0(n))

(3)

Similarly, p(x1|Â
1
, σ̂1) and p(x2|Â

2
, σ̂2) are the probabilities of corresponding

residual signals whose functional forms are similar to the ones in (3). Substituting
these expressions in (2), it can be simpli£ed to,

L(x) =
σ̂
N/2
0

σ̂
n0/2
1 σ̂

(N−n0)/2
2

(4)

In the present form, the GLRT L(x) has a natural interpretation which is as follows:
If there is indeed a change point in the segment x then it has 2P degrees of freedom.

Under H0, we encode x using only P degrees of freedom (LP parameters Â
0
) and

therefore the coding (residual) error σ̂2
0 will be high. However, under H1, we use

2P degrees of freedom to encode x. Therefore, the coding (residual) errors σ̂2
1 and

σ̂2
2 can be minimized to the minimum possible.3 This will result in L(x) > 1. On

the other hand, if there is no change point in the segment x then it can be shown
that for large n0 and N , the coding errors are all equal (σ̂2

0 = σ̂2
1 = σ̂2

2). This will
result in L(x) ' 1.
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Figure 2: Piece-wise quasi stationary segments (PQSS) of a speech signal as de-
tected by the algorithm with γ = 3 and LP order p = 14.

An example is illustrated in £gure 1. The top pane shows an instance of a 6 th

order AR Gaussian process which has a model change point at n0 = 200. In the
bottom pane, we plot the GLRT as the function of the hypothesized change over

3When, Â
1

and Â
2

are computed based on the samples from corresponding quasi-stationary
segments.
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point n. The GLRT achieves the maximum at n0 = 200 which is indeed the PSD
change over point.

3 Multi-scale Piecewise stationary analysis of speech sig-
nals

We have used the GLRT L(x) (4) to facilitate piecewise quasi-stationary anal-
ysis of speech signals. The actual algorithm used is outlined below,
Given signal [x(0),x(1),....x(N)], consider
two segments, LeftSegment=[x(Ls)...x(Le)]
and RightSegment=[x(Rs),...x(Re)].
Detect if model changes at Rs = Le + 1.
1. INITIALIZATION:
Ls = 0, Le = Ls + LEFTMIN,
Rs = Le + 1, Re = Rs + MINRIGHT.

2. Evaluate GLRT with the current
boundaries of the two segments.

3. If GLRT < γ, no model change point at Le. Set Le=Le+INCR,
Rs = Le + 1, Re = Rs + MINRIGHT.

4. If GLRT >= γ, model change point at Le.
Set Ls=Le, Le=Ls + LEFTMIN, Rs = Le + 1, Re = Rs + MINRIGHT.

5. If Re < N , go to (2).

We constrain the minimum duration of the two analysis windows to be MINLEFT=10ms
and MINRIGHT=5ms. This is done in order to avoid estimating LP parameters
from a very small number of speech samples. If there is no model change point de-
tected at the current boundary, then the duration of the left segment is incremented
by INCR=1.25ms. When a model change point is detected, the left segment is
considered a PQSS. All the speech samples in this PQSS are windowed together
to obtain the corresponding Mel-frequency cepstral coef£cients (MFCC)[10]. We
emphasize that the resulting PQSSs are not constrained to be of equal size which
explains the use of the term “multi scale” in our algorithm. In fact, the use of
the threshold γ can be avoided by searching for a local maxima of the GLRT and
assigning it as a model change point. This is evident in the £gure 1 where the
GLRT achieves a distinct maximum at the model change point. Ajmera et. al.[4]
have successfully used this technique for speaker change detection. However, in
our algorithm, we have used an explicit threshold γ = 3. This threshold was
obtained by a visual inspection of the quasi-stationarity of the segmented speech
signal as returned by the algorithm. In £gure 3, we show the boundaries of the
PQSS as detected by the algorithm with γ = 3. As, we found this segmentation
to be reasonably quasi-stationary, we adopted the threshold value γ = 3 for all
the experiments reported in this paper. In the future work, we will incorporate the
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maxima detection as a model change point avoiding the use of the threshold. How-
ever, it is worth noting that the use of a threshold is quite usual in the detection
theory[6]
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Figure 3: Distribution of the PQSS window sizes detected and then used in the
training set

4 Experiments and Results

In order to assess the effectiveness of the proposed algorithm, speech recog-
nition experiments were conducted on the OGI Numbers corpus [9]. It contains
spontaneously spoken free-format connected numbers over a telephone channel.
The lexicon consists of 31 words. We used the algorithm in the section (3) to de-
tect PQSS. The computation of a MFCC feature vector from a very small segment
(such as 10ms) is inherently very noisy.4 Therefore, the duration of a PQSS as
detected by the algorithm was constrained to be in the interval [20ms, 62.5ms].
A £xed LP order p = 14 and the threshold γ = 3 in (2) was used in the algo-
rithm. The value of the threshold γ = 3 resulted in a reasonable segmentation of
the speech signal in terms of the PQSS. Figure 3 shows a speech waveform with
the overlaid boundaries of the detected PQSS using γ = 3. The distribution of the
duration of the PQSSs is shown in £gure 3. Nearly 35% segments were analyzed
with the smallest window size of 20ms and they mostly corresponded to short-
time limited segments. However, voiced segments and long silences were mostly
analyzed by using longer windows in the range 30ms − 62.5ms. Throughout the
experiments, Mel-frequency cepstral coef£cients (MFCC) [10] and their temporal
derivatives have been used as speech features. Four feature sets were generated:

1. [MFCC+Deltas:] 39 element feature vector consisting of 13 MFCCs (includ-
ing 0th cepstral coef£cient) with cepstral mean subtraction and their standard
delta and acceleration features. Spectrum computation over a window of
length 20ms and a shift of 12.5ms.

4Due to very few samples involved in the Mel-£lter integration.
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2. [MFCC+Deltas:] Same as above except that the spectrum is computed over
a window of length 50ms.

3. [Concatenated MFCC+Deltas:] 78 element feature vector which is a con-
catenation of the above two feature vectors.

4. [Multi-scale PQSS MFCC+Deltas:] 39 element feature vector consisting of
13 MFCCs and deltas. For a given frame, the window size is dynamically
chosen using the proposed algorithm ensuring that the windowed segment is
quasi-stationary. A constant shift size of 12.5ms same as in baseline.

Hidden Markov Model and Gaussian Mixture Model (HMM-GMM) based speech
recognition systems were trained using public domain software HTK [8] on the
clean training set from the original Numbers corpus. The system consisted of 80
tied-state triphone HMM’s with 3 emitting states per triphone and 12 mixtures
per state. Although the multi-scale PQSS features were analyzed using variable
sized windows in the range [20ms, 62.5ms], a constant shift size of 12.5ms was
used as in the usual baseline features. This was done for the sake of simplicity in
training a £xed HMM topology of 3 states per triphone as in the baseline system.
We believe that this may be a limitation. In future experiments we will perform
a cross-validation of the optimal number of states per triphone depending on the
distribution of its PQSS. The speech recognition results in clean conditions for
the two £xed scale baseline, concatenated multi-scale and proposed multi-scale
systems are given in table 1. The proposed multi-scale system has a 5.1% WER.
This corresponds to a relative improvement of 10% WER over the two baselines
with WERs 5.9% and 5.8%. The concatenation of MFCC feature vectors derived
from 20ms and 50ms long windows has a 5.7% WER. The slight improvement in
this case may be due to the multiple scale information present in this feature. It
is worth noting that the concatenated MFCC vector based ASR system has twice
the number of HMM-GMM parameters as compared to the proposed system. The
proposed multi-scale PQSS based MFCC system has a 8% relative improvement
over the multi-scale concatenated system.

Table 1: Word error rate in clean conditions

MFCC 20ms 5.8
MFCC 50ms 5.9
Concat. MFCC (20ms, 50ms) 5.7
Proposed Multi-scale PQSS MFCC 5.1

5 Conclusion

We have proposed a novel criterion for multi-scale piecewise quasi-stationary
analysis of speech signal. This technique overcomes the limitations of a single
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£xed scale spectral analysis techniques which blindly assumes each analysis win-
dow to be stationary. The proposed piecewise quasi-stationary analysis technique
yields 10% to 8% relative improvement over the single £xed scale and concate-
nated multiple but £xed scale analysis techniques. In future work, we will explore
the possibility of detecting the PQSS using the local maxima of the generalized
likelihood ratio and the use of a non-uniform HMM-topology.
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