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Abstract

In this paper we investigate the application of Mazimum Entropy Discrimination
(MED) feature selection in speech recognition problems. We compare the MED
algorithm with a classical wrapper feature selection algorithm and we propose
an hybrid wrapper/MED algorithm. We experiment the three approaches on
a phoneme recognition task on the TIMIT database. Results show that the
MED algorithm achieves error rates comparable with the wrapper algorithm
requiring a reduced computational charge. Furthmore the use of a probabilistic
framework shows that the MED algorithm holds very good results even with
very limited amount of data.






Chapter 1

Introduction

Speech recognition systems significantly increase their performance if several
feature streams are used but on the other side computational charges increase
as well; here comes the need for selecting the most significant features. Feature
streams combination can be done at different levels in the system; they can
be combined together after the feature calculation, after the model probability
calculation or after the decoding. The case we consider in this paper is the fea-
ture combination after their calculation. A huge number of front-end techniques
have been proposed with a lot of redundancy between them (MFCC, PLP, LPC,
MSG, articulatory features,etc.) and many techniques for reducing this high di-
mensional space eliminating redundancy between features have been proposed
([81,[9],[10]). Currently speech recognition systems use discriminative feature
transformation like LDA or HDA but it does not exclude a preventive feature
sort for eliminating extra information. A framework for defining the theoret-
ically optimal method for feature subset selection is presented in [5], but this
approach 1s computationally intractable. Tractable algorithms for feature subset
selection belongs to two main classes: wrappers and filters. Wrapper based al-
gorithms are very precise but need large computational resources (see [4]): they
consist in a greedy selection of best feature subset based on the calculation of an
efficiency criterion. Currently used criteria are based on mutual information or
classification error (see [6]). Wrapper based method usually holds very good re-
sults but they need an important quantity of data and high processing resources.
On the other side feature selection algorithms based on filters are simpler and
with a reduced complexity but generally they are not strongly related with the
problem to solve and they are based on simpler criteria. In this paper we study
the application of a feature weighting algorithm to determine the best feature
subset, based on the Maximum Entropy Discrimination (MED) approach (see
[1],[2]) applied to acoustic features. This is a bayesian discriminative algorithm
that associates a probability with each feature: weak features receive low prob-
ability values while strong features receive high probability values; recognition
i1s done using feature expected values w.r.t. their final distributions. The ap-
plication we consider 1s slightly different from the original formulation of the
problem: the original framework aims at weighting features to improve recog-
nition rate, eventually weak features receive zero weight; our goal is to extract
the M most important features out of the N features in the set; they may be
obviously considered as the M features with the highest probability value, in



the same way as in PCA space reduction just the more meaningful features are
used. This condition can be incorporated in the optimal prior formulation and
leads the process to find the M most essential features. This paper is organized
as follows: in section 2 we describe the MED principle, in section 2.2 feature
selection algorithms based on MED for gaussian distribution and HMM are de-
scribed, in section 2.3 an hybrid wrapper/MED feature selection algorithm is
presented and finally in section 3 we present experiments on synthetic data and
speech data.



Chapter 2

Maximum Entropy
Discrimination (MED)

Recently, many methods for joint generative-discriminative learning have been
proposed that take advantages from the two approaches. Generative learn-
ing fits model parameters to observations, while discriminative learning pro-
duces models that can be used for efficient classification. Maximum Entropy
Discrimination (introduced in [1], developed in [2],[3]) is an hybrid genera-
tive/discriminative approach to model learning. In this section we give an

overview of the MED method. ) o ) )
Let’s consider a parametric family of decision boundaries F/(X|©) with some

discrimination properties between two classes that we will call discrimination
funetion with © parameters set. F(X|0O) takes an input vector X and returns
a scalar output; the sign £1 of this output will determine the class to which the
input vector will be assigned to. Given a training set { X} } and the corresponding
binary labels {y;} with ¢ ¢ [1, 7], learning parameters means finding the © that
minimize some kind of classification error. Decision on an unseen input X will be
taken using y = sign F(X|©). In many classification approach the classification
error measure 1s derived using a classification margin i.e. considering how large
is the value of y F(X¢|©). This classification margin can be expressed in the
form y F(X;|©)—~: > 0 where 4; is another variable that represents the margin
that y: F(X;|©) must satisfy; optimization will now consider both parameters
© and margins 4;. So given a certain loss function Loss() non-increasing and

convex, we can write the constrained solution for © as:

min@,w{z Loss(y: F(X:|©))}

subject to Y4+ F(X:]|®) —~v; > 0 Vi (2.1)

Now let’s consider a bayesian framework, in which we try to estimate distri-
butions over parameters i.e. P(0). Classification will be done integrating out
parameters w.r.t. their optimal distribution 1.e. for classifying an input X, we
will use:

9 = sign /@P(@)F(X|®)d® (2.2)

To find the optimal P(©) many solutions are possible. A classical approach
consists in minimizing the negative entropy of the distribution (that is equivalent
to maximizing the entropy) i.e. finding the Mazimum FEntropy distribution



subject to constraints in equation (2.1) i.e.
minpe) — H(P(©))

subject to /P(G)[th(th(a) — 7:]d® > 0 Vit (2.3)

Equation (2.3) formulates what is known as Mazimum FEntropy Discrimination
(MED). Anyway negative entropy is not very flexible for optimizing distribu-
tions. If we have any prior knowledge about parameters under the form of a
prior distribution Py(®), it is possible to replace in equation (2.3) the negative
entropy with the KT distance between P(©) and Py(©), obtaining the so called
Minimum Relative Entropy Discrimination (MRED) formulation i.e.

minpe),p(v) KL(P(®)||Po(®)) = /P(@)lOQ(P(@)IIPo(@))d@

subject to /P(@)[th(Xt|®) — 7:]d® > 0 Vit (2.4)

Generally in literature the two approaches are referred with the same name
(see [1] and [2] for details) and we will adopt this convention even in this paper.
It is interesting to notice that objective function is the KL distance of two
distributions that is a convex function of the argument P(©) and constraints
are linear in P(0), so regardless of nonlinearities of the discriminant function,
the optimization problem concerns a convex function (w.r.t. distribution P(@©)).

Up to this point we have considered fixed margin v;; anyway in real data
problems perfect separability is almost impossible and constraints may gener-
ate an empty search space for optimal distributions. For this reason it is worth
introducing a distribution on margin variables too, that gives non-zero probabil-
ity for negative margins; in this way positive margins will not be penalized and
negative margins will be progressively penalized depending on the distribution
of the margin variables we have fixed. MED framework offers a very elegant
way to combine together model parameters and margin variable parameters;
in fact now the parameter set becomes {©, v}, and assuming the factorization
P(©,7) = P(©)]1, P(y:), we can write the augmented MED formulation (see
[3]) as:

minpe) KL(P(@®)||P(®)) + ZKL(P(%)HPD(%)

subject to /P(G)[th(th(a) — 7:]d®dv; > 0 Vit (2.5)

where Py, is the prior distribution associated with the margin variables. The
solution to (2.5) has the following form (see [7]):

P(©,7) = —z<lx>'Po<®w> e Ml P17l (2.6)
where Z()) is the normalization constant and A = {A1, ..., Ar} defines a set of

non-negative Lagrange multipliers. A is found maximizing the jointly objective
function:

J(A) = —log Z(X) (2.7)

Given a closed form for Z(X), the maximum of the jointly concave objective
function J(A) can be found using any standard convex optimization method.
In [1] the following lemma is demonstrated: any factorization of priors
Py(©,7) across a disjoint set of variables {©,~} leads to a disjoint factoriza-
tion of the MED solution P(©,7) across the same sets of variables provided
that these variables appear in distinct additive components in y; F/(X¢|©) — 4:;



if we assume the following prior factorization Py(©,v) = Po(©)Py(y) and
Po(y) = I1; Po(n:), the solution will be of the form P(©)]], P(v:). As con-
sequence the J(A) function can be written as sum of a term depending on
marginal variables and a term depending on model parameters:

logZ = logZe(X) + Y log Z,(A+) (2.8)
t

= tog( [ Po(@)eZ 17T X119V 40) 4 3 tog( [ Pa(yi)e ™ av)
i

Many choices for the margin variable distributions are possible. We will
consider the following one with its penalty function:

P(y) = ce 07 4, <1 (2.9)
—log Z~, (i) = Ae +log(1 — Xife) (2.10)

Each time the classification term is smaller than the margin mean valuei.e. 1—
1/e, a penalty will occur, otherwise the relative Lagrange multipliers will be zero.
Changing the value of the constant ¢ will make the classification constraints more
or less strict; the limit case ¢ — oo will lead to the case in which margin are
fixed because their probability will be peaked at v, = 1.

2.1 Using generative models

In this section we will show how it is possible to accommodate generative models
in the MED framework. Let’s consider a binary classification problems where
64,0_ are models parameters and y = {41, —1} are labels assigned to sample

X. The discriminant function used in the MED solution can be chosen like
following:

P(X|64)

F(X|©) =log P(X16-)

(2.11)

where © = {04,6_}. Tn this way a discriminative learning framework is de-

fined using the generative parameters of each model. Even if the discriminative
function introduces some non-linearities, the optimization w.r.t. distributions
P(©) will be always a convex optimization problem.

Obviously tractability depends on the possibility of writing the function Z(\)
in closed form. Tt was found in [2] that if P(X|©) belongs to the exponential
family a closed form for Z(A) can be found.

In [3] it was shown that in hybrid generative/discriminative learning a good
initialization for parameters prior distributions is optimal bayesian posterior
distributions because in this way the MED solution will be the solution that
respects classification constraints and is as closed as possible to the generative
model. If the classification problem involves more than two classes, classification
constraints must be imposed for all possible couples in order to assure that the
correct model will always ’"dominate’;

The MED framework can accommodate many currently used models. When
models contain hidden variables, an EM-like algorithm is possible (see [3] for
details). Tn [3] it was used to learn models that belong to the exponential family,
mixture models (like GMM), mixture of mixtures (like HMM); basically the
complete model parameter set can be learned using MED (e.g. gaussian means,
variances etc.) but here we will consider just the feature selection problem.
Together with classification many other problems like regression, transduction
or anomaly detection can be solved using MED.



2.2 MED feature selection

A possible application of the MED learning is feature selection (see [2]). Tt
consists in associating with each feature a switch s; that can activate or not a
certain feature. A distribution is assumed for those variables and MED learning
is used to find the optimal one. Our purpose is slightly different from the original
feature selection formulation: in fact we try to select the M best features out of
the global N features; so M selected features will be features with the highest
expected values calculated w.r.t. the MED optimal distribution.

2.2.1 Multivariate gaussian

Feature selection problem can be formulated in term of MED. We will first con-
sider the simple case in which the competing models are multivariate gaussians
with diagonal covariance matrix i.e.

1
V2o,

P(X:18) = [ ]( exp(—(X1i — pi)’/207))" (212)

where N is the observation vector dimension, p,c? are gaussian mean and

covariance, and s; i1s a binary variable that indicates if a feature is selected or
not i.e. s; = 1 if the feature i1s active, else s; = 0. Let’s introduce a prior
distribution on s;: P(s;) = pi* (1 — pi)1 =% with 0 < p; < 1. Let’s write the
discriminative function between two different models {64,0_} (supposing to
simplify notation that X; belongs to model #4 and so y = +1) as:

F(X4|®) = log P(X:]64)/P(X4|6_) = 5:Wa (2.13)

i

Wit = [(Xei — 052 /0F = (Xui = u7)?fo7 1+ log(oT [o7) (2.14)

Eventually other models can be used e.g. model dependent coefficients s;
or joint optimization of features and model (using distributions on mean and
covariance) but in this paper we will limit our investigation to the case in which
s; are common to all models.

It 1s now possible to find a MED solution to the feature selection problem.
Expression (2.8) can be calculated in closed form:

T N T
JA) = 3" +log(l = Ae/e)] = 3 log[l — pi + pieZt At Wit] (2.15)

t

Maximizing expression (2.15) will provide the optimal Lagrange multipliers set

and the MED distribution can be explicitly computed. The value of discrim-
inative function for an observation X, can now be calculated integrating out
O = {s;} w.r.t. their distribution in equation (2.13) i.e.

/P(@)F(X,,|@)d@ = f: £i Wip

(2.16)
T (1= pi)em BT Wit 4,

If distribution is not a single multivariate gaussian but a gaussian mixture the

previous computation is no more valid; there are two possible solutions: assign-
ing an observation to a gaussian in the mixture (like in a K-means algorithm),
falling in the mono-gaussian case, or using a probabilistic algorithm based on
the reverse Jensen inequality described in [3]. Anyway those investigation are
not, pursuited in this paper.



2.2.2 Hidden Markov Models

In this section we consider the MED feature selection applied to an HMM with
single gaussian pdf with feature weights i.e. expression (2.12)(without loss of
generality because an HMM with gaussian mixture models can be interpreted
as an HMM with single gaussian and more states corresponding to mixture
components). In this case function P(X;|©) is the likelihood of the observation
sequence X; calculated using the HMM. Let’s consider two competing HMM
and an observation sequence X; = {Xyo...X¢;}. After doing forced alignment
(e.g. with a Viterbi algorithm) we will obtain two sequences of states (and
relative emission probability) that will give the likelihood of the sequence:

P(X|64) = ntatoFatot. ool

P(X:16-=) = 7~ ag by ay by ...a7b] (2.17)

where @ ) is the transition probability from state at time j to state at time j+1
and b is the probability emission with an expression similar to (2.12). Now

that all hidden variables are determined (i.e. the state sequence) it is possible to
apply again the MED solution to the problem in the same form as the previous
paragraph. A closed form for (2.8) can be obtained even in this case:

T T ny dj—v
TO) = 3D +log(l = Mfe)] = 303 log—
1 i 4=0 i3

ul ST 22Tt Wiy
— S log[t — pi + pieTt M Es=o Vit (2.18)

i

where t = 1,...,T indicates the sequence number, j = 1, ..., ns, indicates the

tth sequence elements,i = 1,...N indicates the feature, and Wj;; indicates the
log-likelihood difference between the jth element of the ¢th sequence for the
ith feature. In this case the solution has a Lagrange multiplier for each data
sequence.

2.2.3 Optimal prior estimation

Optimal prior estimation is always an important task in all bayesian approaches.
Many criteria are possible (ML,MAP, Minimum Entropy). We decided to use
a maximum likelihood approach to optimal prior estimation i.e. given data X,
parameters ©, and prior ¢, ML optimal priors are given by:

&= argmaxg/P(X|®)P(®|€)d® (2.19)

In our case © = {s;} and £ = {p; }, expression (2.19) corresponds to finding p;
that maximize expression (2.16). To optimize (2.16), A’s values are needed; to
circumvent the problem an alternate optimization w.r.t parameters (i.e. A) and
priors (i.e. p) can be done in the same fashion as described in [12]. Because
our final goal 1s finding a feature subset of dimension M out of the N possible
features, we impose the condition that va E[si] = va pi = M together with
the other condition ¢ < p; < b. This is actually a suboptimal choice but
experimental evidence showed its efficacy. We choose a = 0.99 (strong prior)

and b = 0.09 (weak prior).



2.2.4 Practicalities

Finding MED solution of the problem corresponds in practice to maximize the
function J(A) that is convex so any optimization techniques will bring to the
global maximum of the function. Possible techniques include Newton-Raphson
method, gradient descent, line search, or conjugate gradient descent. As dis-
cussed in [3] (Appendlx) the most performmg method consists in doing axis-
parallel optimization in which a Lagrange multiplier at a time is updated. In
some cases it 1s possible to find a closed form for the axis optimization but this
is not our case. For maximizing the function we used derivatives of J(A) w.r.t
Aq; to find the zero of each derivate we used Brent’s method (as suggested in [3])
that has the advantage of using just the function value and not its derivatives
and 1t 1s more efficient compared to other methods like bisection methods. In
practise the optimization process consists in iteratively solving:

T
§I(X 1 N o Wi eZt M Wit
X _ - o S =0 (2.20)
o c— Ao 1—pi -I-plezt At Wiy
for « = 1,...,7T in the case of single gaussian feature selection. Looking at

equation (2.20) we can notice that the solution A, is in the interval [0, ¢); when a
classification error is smaller than the margin mean value, the relative Lagrange
multiplier is non zero; otherwise it is zero. Another important point is that
the solution is generally spare i.e. just a few out of the whole set of Lagrange
multipliers are different from zero. It means that it is useless to update all
multipliers with the same frequency; a stochastic solution can be used; in a first
time multipliers are sorted on the base of their relevance respect to the function
to optimize (i.e. eq. (2.20)) and then updates are done sampling multipliers
from the sorted table (we used a gaussian distribution centered at the more
relevant multiplier to sample data). Tn this way the more important multipliers
will be updated with a higher frequency than the less significant one, reducing
the number of iterations needed to converge. Particular attention must be used
in determining the most relevant multipliers; using simply AJ(\,) can pose
some problems; at early stages it will be large, even for irrelevant multipliers
and then its value will progressively decrease. In [3] it is proposed to consider an
’adjusted’ model with an exponential penalty term i.e. AJy = AJ,— aexp(—pt)
where parameters «, f can be determined in some way (e.g. with a simple
least square criterion). In this way it is possible to determine the real relevant
multipliers regardless the order in which they are processed.

2.3 Wrapper feature selection

A very efficient and well known approach to feature selection is the wrapper
method [4]. Wrapper based methods are very precise and efficient but require
very big computational resources because they consider explicitly all possible
feature subsets of a given size to eliminate the weakest features in a greedy way.
The iteration can be done in two ways: with a backward procedure or with a
forward procedure. Generally the backward procedure is preferred because it
permits to take advantage of the interaction between different features. In our
experiments we will consider the backward procedure. The algorithm can be
generalized as follows:

1. initialize the algorithm with the whole feature set F'
2. while dimension d of F is larger then N (desired final dimension)

3. for all possible S; of size d — 1

10
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Figure 2.1: Feature expected values after MED learning; features with expected
values bigger than the threshold are chosen, otherwise they are discarded; y axis
is logarithmic scale

4. evaluate the criterion D(X, A;)
5. set ' = §; where S; minimize D
6. end

where A; is the model corresponding to features in subset S;. Many possible
choices for D(X, A;) are possible: commonly used criterion are based on mutual
information or classification error. To compare the method in the fairest way
with the MED algorithm we choose a criterion based on the discriminative
function (2.13):

P(X4|64,As)

7P(Xt|€_,A,)) (2.21)

D(X,A;) = — Z sign(log
t
where as before #,,60_ are competing models. In other words the algorithm
counts errors when different feature subsets are considered and eliminates fea-
tures that hold the highest classification error.

2.3.1 Hybrid wrapper/MED feature selection

In order to take advantage of both methods we propose an hybrid algorithm
using as criterion D the MED solution; as before the set F' is initialized with
the whole feature set, then MED is performed and this time the feature with the
smaller expected value is taken out of the bunch. This procedure is iterated until
the desired number of features is reached. This time the complexity is linear
with the number of features: our initial intuition is that eliminating weakest
features would increase the number of Lagrange multipliers that go to zero,
converging to a different result form the one-step MED algorithm.

11
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Chapter 3

Experiments

3.1 Synthetic data

To test the efficiency of the MED feature selection we run the following exper-
iment on synthetic data: 1500 vectors of dimension 5 where generated using 3
gaussians with unitary diagonal covariance matrix (resulting in 3000 classifica-
tion constraints) and with the following mean vectors: m; = [1,1,—1,0,1]7,
ms = [2,1,1,0,3]7 and mz = [3,1,1,0,6]".

Features one and five are the most discriminant between the three gaussian
distributions, feature three cannot discriminate between ms and ms, and fea-
tures two and four cannot discriminate at all. We run MED feature selection
using model (2.12), uniform priors p; = 0.009 ¥/ and with ¢ = 2. Sorting fea-
tures using their expected values w.r.t MED optimal distributions, we found
that the first and the fifth features were the most significant, followed by the
third and finally the second and the fourth that got almost zero as expected
value.

This experiment on synthetic data shows that MED feature selection is able
to learn features relevance for the classification task.

3.2 Speech recognition

The richness of speech recognition front end techniques raises the need of finding
an optimal subset that permits good performance reducing the computational
charges.

In [9] a wrapper method was used to select the best subset of fixed dimen-
sion (39) between MFCC features and articulatory features; in [10] an iterative
algorithm based on mutual information was used to select best feature subset
between MFCC,LPC and PLP features; and in [8] best feature combination is
determined using conditional mutual information. A well known measure of
redundancy of information between features is mutual information. To study
redundancy between MFCC and PLP features we computed numerically the
mutual information between an element of the MFCC feature vector z; and an
element of the PLP feature vector y; as:

(@i, y;) = - > p(@i, yi)loglp(@in, yi)/p(zie)p(yic)) (3.1)
N

13



Probabilities p(2it, y;¢) , p(2s¢) , p(yir) where estimated using the Parzen window

density estimation (see [11]) that consists in estimating the pdf values of a vector
z given M training vectors {z;}4, as p(z) = ﬁ Zf\il ¢(z — zi, h) where ¢ is
the window function and A is the window width parameter. In our experiments
¢ 1s gaussian and optimal h is estimated using cross validation. To represent
mutual information, we normalized scores for different features. Figure (3.1)
shows mutual information between MFCC (x axis) and PLP (y axis). MI is
high on the diagonal showing a certain redundancy (as expected because of the
similarities in the two front end techniques).

Figure 3.1: Mutual information between MFCC+A+AA and PLP+A+AA

coefficients

In our experiments we want to compare the MED feature selection algo-
rithm (described in 2.2.1) with a very efficient wrapper algorithm and with
an hybrid wrapper/MED algorithm. In order to compare the three techniques
we run context independent phoneme recognition experiments on the TIMIT
database. The phoneme set is constituted by the classical 39 phoneme and
each phoneme is modeled with a 3 state left-to-right HMM. Experiments are
run using the HTK system. The original feature set is constituted by 75 fea-
tures: 12 MFCC, their delta and delta-delta coefficients, 12 PLP, their delta
and delta-delta coefficients, energy, its delta and delta-delta coefficients. In our
experiments we tried to reduce the original 75 feature set to a 24 feature sub-
set using the three different methods (wrapper,MED, hybrid wrapper/MED).
At first an HMM with single gaussian distributions as emission probabilities is
considered. To apply algorithms previously described all hidden variables must
be estimated and all training set observations must be assigned to a class; a
single gaussian HMM 1is trained using the full 75 feature set and forced align-
ment is run, associating each observation to a single state. We consider states
as classes for MED and wrapper algorithm (even if other assignments are pos-
sible) and class distribution is the multivariate gaussian associated with each
state. It is now possible to run feature selection algorithm. Theorically in both
algorithms we should impose a classification constraint for all competing classes
i.e. 38 phonemes times 3 states = 114 competitors. This results in a consistent
increase of constraint number; for this reason we used the first 10 best competi-
tors for each observation only. The value of constant ¢ is fixed to 2. In order
to increase the convergence speed we used the stochastic optimization method
described in section 2.2.4 to optimize the normalization function J(A). Another
parameter we are interested in 1s the robustness to the amount of data; for this

14



reason we run the feature selection algorithm with 2 training set of respectively
20000 observations and 200000 observations. Figure (2.1) represents features
expected values computed using the optimal MED distributions; features with
expected value higher than the threshold are taken, others are discarded. Y
axis is logarithmic scale. We selected the best 24 features. It is evident that
MED seems to privilegiate MFCC feature respect to PLP features. Using the
same class assignment the wrapper feature selection method was run as well the
hybrid wrapper/MED algorithm. State alignment and feature subset selection
is done with a single gaussian model: anyway once the optimal feature subset
i1s found, gaussian number is increased up to 4 for each state and the feature
subset is tested with the 4 gaussians model in order to verify that the subset
is still significant. Table (3.1) reports recognition rate for the full feature set

feature (a) full set | (b) MFCC+A | (¢) PLP4+A
1 gaussian 61.2 49.5 50.2
4 gaussian 67.2 55.9 55.6

Table 3.1: Recognition rate for different features set: (a) 36 MFCC+A+AA+36
PLP+A+AA+Energy+A+AA; (b) 24 MFCCH+A; () 24 PLP+A

feature T | (d) MED | (e) Wrapper/MED | (c¢) Wrapper
1 gaussian 54.0 53.9 51.1
4 gaussian 59.0 59.2 57.7
feature 1T | (d) MED | (e) Wrapper/MED | (c) Wrapper
1 gaussian 54.0 53.9 56.2
4 gaussian 59.0 59.2 61.6

Table 3.2: Recognition rate (PER) for different features subset set obtained with
a training set of 20000 observation; (d) MED feature subset; (e) hybrid wrap-
per/MED feature subset; (f) wrapper feature subset; feature T: 20000 training
vectors, feature IT 200000 training vectors

in column (a), while column (b) and (c) shows error rate for (b) 24 MFCC+A
and (c) 24 PLP+A. Table (3.2) shows results for (d) MED feature selection,
(e) hybrid wrapper/MED feature selection and (f) wrapper feature selection,
for two different amount of training data: 20000 (feature T) and 200000 (feature
IT) training vectors. The three feature selection algorithms achieved better per-
formance than the classical 24 features set (b) and (¢). When poor amount of
training data are provided (20000) MED method performs better than wrapper
method, on the other side when large amount of training data is used (200000)
wrapper performs better then MED. MED feature selection algorithm shows a
high robustness to amount of data; we think this is due to fact that the MED
framework is a bayesian framework and generally bayesian approaches are more
robust to amount of training data; furthermore the final result seems to be
strongly determined by prior values. It 1s interesting to notice that the wrap-
per method considers all possible subsets of size N to eliminate a feature 1.e.
in this case 2805 possible feature subsets and for each of them a computation
of the criterion D must be done. On the contrary the MED just requires the
optimization of an objective function and still holds interesting results. The hy-
brid wrapper/MED method seems to perform like MED contrarily to our initial
intuition; in fact eliminating always the weakest feature does not seem to have

15



any important consequence on the computation of Lagrange multipliers whose
values depend on the strongest features.

It is interesting to notice that feature subset chosen are significantly differ-
ent. Table (3.3) shows the 24 features selected by each of the 3 algorithms;

feature Optimal feature subset
(c) energy; 1,2,3.5,6,7,89,10,11 MFCC;
1,2,3,4,7,8 A-MFCC; 12 PLP;
1,6 A-PLP; 6,7,10,12 AA-PLP
(d) energy; 1,2,3.5,6,7,8,9,10 MFCC;
1,2,3,4,7,8 A-MFCC; 12 AA-MFCC;
12 PLP; 1,6 A-PLP; 6,7,10,12 AA-PLP
(e) 2,3,4,9 MFCC; 5,6,9 A-MFCC; 4 AA-MFCC;
1,2,3,5,6,7,8,9 PLP; energy A, AA ;
1,2,3,4,8 A-PLP; 8 AA-PLP

Table 3.3: Optimal feature subset determined using the algorithms (¢) (d) and

()

features selected by the MED algorithm are almost similar to the one chosen
by the wrapper/MED algorithm. Wrapper feature selection seems to privile-
giate the PLP coefficients while MED algorithm seems to select more MFCC
coefficients. At a first look it may seem strange that two algorithms based on
the same discriminative function (2.13) give such different results; but it is easy
to understand the diversity of two approaches: MED is based on probabilities
while wrapper (here considered) is based on pure error computation. Further-
more even if MED is based on classification error, as it is observed in [2], it has
an information theoretic interpretation: MED solution minimizes the mutual
information between data and parameters.

3.3 Conclusion and future works

In this paper we applied an MED approach to feature subset selection and com-
pared it with a more classical wrapper approach. We proposed as well an hybrid
MED /wrapper approach. MED feature selection does not need the same huge
computational resources needed by wrapper methods. Furthermore the bayesian
framework in which the MED algorithm is defined, gives a very high robustness
respect to the amount of data used. Another interesting application of MED
feature selection to speech recognition could be to determine the most reliable
features in noisy condition. Future works may involve the joint of optimization
of model parameters and features imposing a distribution on gaussian means
and variances.
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