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ABSTRACT

This paper introduces a novel deformable model for face mapping
and its application to automatic person identification. While most
face recognition techniques directly model the face, our goal is to
model the transformation between face images of the same person.
As a global face transformation may be too complex to be modeled
in its entirety, it is approximated by a set of local transformations
with the constraint that neighboring transformations must be con-
sistent with each other. Local transformations and neighboring
constraints are embedded within the probabilistic framework of a
two-dimensional Hidden Markov Model (2-D HMM). Experimen-
tal results on a face identification task show that the new approach
compares favorably to the popular Fisherfaces algorithm.

1. INTRODUCTION

Realistic models of the face are required for a wide variety of ap-
plications including facial animation, classification of facial ex-
pressions or face recognition. Face recognition is a challenging
pattern classification problem as face images of the same person
are subject to variations in facial expressions, pose, illumination
conditions, presence or absence of eyeglasses or facial hair, etc.
The focus of this paper will be on the first source of variability.

While most face recognition algorithms attempt to build for
each person a face model which is intended to describe as accu-
rately as possible his/her intra-face variability, in this paper we
model a transformation between face images of the same person.
To avoid the excessive complexity of direct modeling of the global
face transformation, we propose to split it into a set of local trans-
formations and to impose neighborhood consistency of these lo-
cal transformations. Local transformations and neighboring con-
straints are naturally embedded within the flexible probabilistic
framework of the 2-D HMM.

Deformable models of the face have already been applied to
face recognition. The basic approach of Elastic Graph Matching
(EGM) [1] is to match two face graphs in an elastic manner. The
quality of a match is evaluated with a cost function �����	��
�����
where ��� and ��� are respectively the costs of local matchings and
local distortions and � controls the rigidity of the matching. [2]
elaborated on the idea with the Elastic Bunch Graph Matching
(EBGM) and both algorithms were later improved, especially to�
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weight the different parts of the face according to their discrimi-
natory power [3, 4]. The two major differences between the above
elastic approaches and the new approach presented in this paper
are: �

in the use of the HMM framework which provides efficient
formulae to 1) compute the likelihood that a template image���

and a query image
���

belong to the same person given
the face transformation model � , i.e. ��� � ��� � � � �"! and
2) train automatically all the parameters of � ,�
in the use of a shared deformable model of the face � for
all individuals, which is particularly useful when little en-
rollment data is available.

The remainder of this paper is organized as follows. A high-
level description of the 2-D HMM as a probabilistic model for
face transformation is given in the next section. Sections 3 and
4 provide a quantitative formulation for local transformations and
neighborhood consistency, respectively. In section 5 we briefly
introduce Turbo-HMMs (T-HMMs) to approximate the computa-
tionally intractable 2-D HMMs [5]. Section 6 summarizes exper-
imental results for a face identification task on the FERET face
database [6] showing that the proposed approach can significantly
outperform the popular Fisherfaces technique [7].

2. FRAMEWORK

A global face transformation is too complex for direct modeling.
We hence propose to approximate it with a set of local transforma-
tions. These transformations should be as simple as possible for an
efficient implementation, while the composition of all local trans-
formations, i.e. the resulting global transformation, should be rich
enough to model a wide range of facial deformations. However,
if we allow all possible combinations of local transformations, the
model might become over-flexible and “succeed” to patch together
very different faces. This naturally leads to the second component
of our framework: a neighborhood coherence constraint whose
purpose is to provide context information. It must be emphasized
that such neighborhood consistency rules produce dependence in
the local transformation selection and the optimal solution must
therefore involve a global decision. To combine the local trans-
formation and consistency costs, we embed the system within a
probabilistic framework using 2-D HMMs.

At any location on the face, the system is in one of a finite set
of states. If we assume that the 2-D HMM is first-order Marko-
vian, the probability of the system to enter a particular state at a
given location, i.e. the transition probability, depends on the state
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of the system at the horizontally and vertically adjacent locations.
At each position, an observation is emitted by the state accord-
ing to an emission probability distribution. In our framework, lo-
cal transformations correspond to the states of the 2-D HMM and
the target/template image data is the collection of emitted obser-
vations. Emission probabilities model the cost associated with a
local mapping. These transformations or states are “hidden” and
information on them can only be extracted through the observa-
tions. Transition probabilities relate states of neighboring regions
and implement the consistency rules.

3. LOCAL TRANSFORMATIONS

Feature vectors are extracted on a sparse grid from the template
image

���
and on a dense grid from the query image

� �
as is

done in EGM [1]. Each vector summarizes local properties of the
face. We then apply a set of local geometric transformations to the
vectors extracted from

� �
. Each transformation maps a feature

vector of
� �

with a feature vector in
� �

. Translation, rotation
and scaling are examples of simple geometric transformations and
may be useful to model local deformations of the face. In the re-
mainder of this paper, we restrict the set of geometric transforma-
tions to translations, as a small global affine transformation can be
approximated by a set of local translations.

We now formulate the emission probabilities. Let ����� � be the
observation extracted from

� �
at position ��� �
	 ! (c.f. Fig. 1) and

let � ��� � be the associated state (i.e. the translation). If � � ���� � ��� !
is a translation vector, the probability that at position ��� �
	 ! the
system emits observation � ��� � given that it is in state � ��� � ��� , is��� � ����� � !�� ��� ����� � � � ��� � ��� ��� ! where

� � � ��������� ! . We clearly
separate HMM parameters into Face Dependent (FD) parameters� �

that are extracted from
� �

and Face Independent Transfor-
mation (FIT) parameters

���
, i.e. the parameters of the shared

transformation � that can be trained reliably by pooling together
the training images of all individuals.

Let � ��� � � ��� ��� � �! ��� � ! denote the coordinates of observation� ��� � in
� �

. Let � ���� � be the coordinates of the matching feature in���
: � ���� � �"� ��� � 
#� . The emission probability

�$� � ����� � ! represents
the cost of matching these feature vectors.

� � � � ��� � ! is modeled
with a mixture of Gaussians as linear combinations of Gaussians
have the ability to approximate arbitrarily shaped densities:� � � � ��� � ! ��%'&)( &��� � � � � & � � ��� � !

TEMPLATE QUERY
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Fig. 1. Local matching

� � � & � ����� � ! ’s are the component densities and the ( &��� � ’s are the mix-
ture weights and must satisfy the following constraint: 7 ��� �
	 ! and7�� , 8 & ( &��� � �:9 . Each component density is a ; -variate Gaus-
sian function of the form:

� � � & � � ��� � ! �=<�>@?
ACBEDF � ����� � BHG � � &��� � ! �CI &�JLK DNM��� � � ����� � B#G � � &��� � !$O

�
P�Q !SR T � I &��� � �NUT
where

G � � &��� � and
I &��� � are respectively the mean and covariance ma-

trix of the Gaussian, ; is the size of feature vectors and
�WV	�

de-
notes the determinant operator. This HMM is non-stationary as the
Gaussian parameters depend on the position ��� ��	 ! .

Let X ���� � be the feature vector extracted from the matching
block in

���
. We use a bi-partite model which separates the mean

into additive FD and FIT parts:G & � ���� � �YX ���� � 
[Z &��� �
where X ���� � is the FD part of the mean and Z &��� � is a FIT offset. Intu-
itively,

�$� � ����� � ! should be approximately centered and maximum
around X ���� � .

4. NEIGHBORHOOD CONSISTENCY

The neighborhood consistency of the transformation is ensured
via the transition probabilities of the 2-D HMM. If we assume
that the 2-D HMM is a first order Markov process, the transition
probabilities are of the form ����� ��� � � � ��� � K D � � � K D � � ��� ! . However,
we show in the next section that a 2-D HMM can be approxi-
mated by a Turbo-HMM (T-HMM): a set of horizontal and vertical
1-D HMMs that “communicate” through an iterative process. So
the transition probabilities of the corresponding horizontal and ver-
tical 1-D HMMs are respectively:\W]��� � ���_^!�a` ! � ����� ��� � �Y� � � ��� � K D �Y�b` ��� !\@c��� � ���_^!�a` ! � ����� ��� � �Y� � � � K D � � �Y�b` ��� !

Invariance to global shift in face images is a desirable property.
Hence we choose \ ] and \ c to be of the form:\W]��� � ���_^d�a` ! � \W]��� � ��Ze� ! \@c��� � ���6^d�b` ! � \ac��� � ��Z�� !
where Ze� �f� B � ` . \ ] ��� � and \ c��� � model respectively the hori-
zontal and vertical elastic properties of the face at position ��� �
	 !
and are part of the face transformation model � . If we assume
that

� �
and

� �
have the same scale and orientation, then \ ] ��� � and\ c��� � should have two properties: they should preserve both local

distance, i.e. � and � ` should have the same norm, and ordering,
i.e. � and � ` should have the same direction. An horizontal separa-
ble parametric transition probability that satisfies the two previous
constraints is:

\W] ��� � ��Ze�� ! �"g ��h ] ��� � !di
Kkj 0 T3T,l�m 3+�- . T \W] ���� � ��Ze��� ! �Yg ��h ] ���� � !di

K j 0 T2T,l m 2+�- . T
where g is a normalization factor such that 8Yn � 3 \ ] ��� � ��Z��  ! �o9
and 8Yn � 2 \ ] ���� � ��Ze� � ! �p9 . Similar formulae can be derived for
vertical transition probabilities.
We assume in the remainder that the initial occupancy probability

of the 2-D HMM is uniform to ensure invariance to global trans-
lations of face images. To summarize, the parameters we need to
estimate are the FIT parameters

� �
, i.e. ( ’s, Z ’s,

I
’s and transi-

tion probabilities \ ] ��� � ’s and \ c��� � ’s.
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Fig. 2. Neighborhood consistency

5. TURBO-HMMS

While HMMs have been extensively applied to one-dimensional
problems [8], the complexity of their extension to two-dimensions
grows exponentially with the data size and is intractable in most
cases of interest. [5] introduced Turbo-HMMs (T-HMMs), in ref-
erence to the celebrated turbo error-correcting codes, to approxi-
mate the computationally intractable 2-D HMMs. A T-HMM con-
sists of horizontal and vertical 1-D HMMs that “communicate”
through an iterative process.

T-HMMs rely on the following approximation of the joint-
likelihood of observations



and states � given the HMM param-

eters
�

:

��� 
 � � � � !��� � � ��� ��c� � � c� � � c� !� � ����� ��� � � ��]� ��� ]� !��
where � ] � and � c� are respectively the i-th row and j-th column
of observations,

� ] � and
� c� are the i-th row and j-th column of

model parameters and � c� is the j-th column of states. Each term��� � c� � � c� � � c� ! corresponds to a 1-D vertical HMM and� � ����� ��� � � � ] � ��� ]� ! is in effect a horizontal prior for column
	
. We

can derive the dual formula where 1-D horizontal HMMs commu-
nicate through the use of a vertical prior.

The computation of ��� � � � � ��� � ! , i.e. of ��� 
 � � ), is based
on a modified version of the forward-backward algorithm which
is applied successively and iteratively on the rows and columns
until the horizontal and vertical priors reach some kind of agree-
ment [5]. This algorithm is clearly linear in the size of the data.
It must be underlined that we do not obtain one unique score but
one horizontal and one vertical score. Combining these two scores
is a classical problem of decision fusion. As experiments showed
that these scores were generally close, we simply averaged the log-
likelihoods. Although this simple heuristic may not be optimal it
provided good results. While EGM only takes into account the best
transformation during the score computation, we take into account
all possible transformations weighted according to their probabil-
ity, which should yield a more robust score.

During training, we present pairs of pictures (a template and
a query image) that belong to the same person and optimize the
transformation parameters

� �
, to increase the likelihood value��� � ��� � ��� �"! (Maximum Likelihood Estimation). This is an-

other advantage of the proposed approach as we can train all model
parameters while, to the best of our knowledge, EGM’s rigidity
parameter (which has the same function as our transition probabil-
ities) must be hand-tuned.

6. EXPERIMENTAL RESULTS

6.1. The Database

All the following experiments were carried out on a subset of the
FERET face database [6]. 1,000 individuals were extracted: 500
for training the face deformation model and 500 for testing the per-
formance. We use two images (one target and one query image)
per training or test individual. It means that test individuals are
enrolled with one unique image. Target images are extracted from
the gallery (FA images) and query images from the FB probe. FA
and FB images are frontal views of the face that exhibit large vari-
abilities in terms of facial expressions. Images are pre-processed
to extract 128x128 normalized facial regions. For this purpose, we
used the coordinates of the eyes and the tip of the nose provided
with each image.

6.2. Gabor Features

We used Gabor features that have been successfully applied to face
recognition [1, 2, 3, 9] and facial analysis [10]. Gabor wavelets are
plane waves restricted by a Gaussian envelope and can be charac-
terized by the following equation:��� � � ��� ! � � � � � � � � � Fh F i K�� � ��� - � � � T � � 4 � � TT,l T � i � & � - � � B i K � T"! F$#
where

� � � � � � � <�>@? ����% � ! . � � � �'&)( '*,+ � with -/.10 9 � ;32 and% � � Q G *54 with
G .60 9 � 4 2 . G and - define respectively the

orientation and scale of
� � � � .

After preliminary experiments, we chose the following set of
parameters that yielded better results with both our Fisherfaces
baseline and the proposed algorithm: ; �87 , 4 �89 , h �=PeQ ,�'&)(  �YQ *;: and + �=< P . For each image we normalized the fea-
ture coefficients to zero mean and unit variance which performed
a divisive contrast normalization [10].

6.3. The Baseline: Fisherfaces

While Principal Component Analysis (PCA) is a dimension re-
duction technique which is optimal with respect to data compres-
sion, in general it is sub-optimal for recognition. For such a task,
Fisher’s Linear Discriminant (FLD) should be preferred to PCA.
The idea of FLD is to select a subspace that minimizes the ratio of
the inter-class variability and the intra-class variability. However,
the straightforward application of this principle to face recognition
is often impossible due to the high dimensionality of the feature
space. A method called Fisherfaces was developed to overcome
this issue [7]: one first applies PCA to reduce the dimension of the
feature space and then performs the standard FLD.

For fair comparison, we did not apply directly Fisherfaces on
the gray level images but on the Gabor features as done for instance
in [9]. A feature vector was extracted every four pixels in the hor-
izontal and vertical directions and the concatenation of all these
vectors formed the Gabor representation of the face. In [9] vari-
ous metrics were tested: the > D , > F (Euclidean), Mahalanobis and
cosine distances. We chose the Mahalanobis metric which con-
sistently outperformed all other distances. The best Fisherfaces
identification rates is 93.2% with 300 Fisherfaces.

6.4. Performance of the Novel Algorithm

To reduce the computational load, and for a fair comparison with
Fisherfaces, the precision of a translation vector � was limited to
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Fig. 3. Performance of the proposed algorithm.

4 pixels in both horizontal and vertical directions. Therefore, a
vector X was extracted every 4 pixels of the query images as was
done for Fisherfaces (dense grid). For each template image, a fea-
ture vector � was extracted every 16 pixels in both horizontal and
vertical directions (sparse grid) which resulted in ����� � :�� ob-
servations per template image. We tried a smaller step size for
template images but this resulted in marginal improvements of the
performance at the expense of a much higher computational load.

To train single Gaussian mixtures, for each training couple� � ��� � � ! we first align approximately
� �

and
� �

, match each
block in

� �
with the corresponding block in

� �
and initialize

Gaussian parameters. Transition probabilities are initialized uni-
formly. Then

� �
parameters are re-estimated using the modified

Baum-Welch. To train multiple Gaussians per mixture we imple-
mented an iterative splitting/re-training strategy.

We measured the impact of using multiple Gaussian mixtures
to weight the different parts of the face and using multiple horizon-
tal and vertical transitions matrices to model the elastic properties
of the various parts of the face. In both cases, we used face sym-
metry to reduce the number of parameters to estimate. Hence, we
tried one mixture for the whole face (

I &��� � � I &
, Z &��� � �:Z & and( &��� � �Y( & ) and one mixture for each position (using face symme-

try, it resulted in : ��� ��P,9 mixtures). We tried one horizontal and
one vertical transition matrices for the whole face and one horizon-
tal and one vertical transition matrices at each position (using face
symmetry, it resulted in ���	� � PS9 horizontal and : ��
 � P :
vertical transition matrices). This made four test configurations.
The performance was drawn on Fig. 3 as a function of the number
of Gaussians per mixture.

While applying weights to different parts of the face provides
a significant increase of the performance, modeling the various
elasticity properties of the face had a limited impact and resulted
in small consistent improvements. The best performance is 96.0%
identification rate. Applying a simple Mc Nemar’s test of signif-
icancy [11], we hence guarantee with more than 99% confidence
that our approach performs significantly better than Fisherfaces.

We should underline that the approximation of ��� ��� � ��� � �"!
based on T-HMMs is very efficient as, once the Gabor features are
extracted from

� �
and

� �
, it takes only 15 ms to our best system

with 16 GpM to compute the score on a Pentium IV 2 Ghz .

7. CONCLUSION

We presented a novel deformable model of the face and applied
it successfully to face recognition. In our framework, the shared
face deformation is approximated with a set of local transforma-
tions with the constraint that neighboring transformations must be
consistent with each other. Local transformations and neighbor-
ing constraints are embedded within a probabilistic framework us-
ing an approximation of the intractable 2-D HMMs: the Turbo-
HMMs.

As the objective of this work was not modeling face deforma-
tion per se, but the face recognition problem, it is noteworthy that
Maximum Likelihood Estimation is generally not optimal. It may
be advantageous to train the HMM parameters under discrimina-
tive criteria such as the Minimum Classification Error (MCE) or
its approximation via the Maximum Mutual Information Estima-
tion (MMIE) criterion.
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