Next-generation mobile networks must reconcile the often-conflicting goals of multiple service owners. However, today's network slice controllers remain rigid, policy-bound, and unaware of the business context. We introduce Agoran Service and Resource Broker (SRB), an agentic marketplace that brings stakeholders directly into the operational loop. Inspired by the ancient Greek agora, Agoran distributes authority across three autonomous AI branches: a Legislative branch that answers compliance queries using retrieval-augmented Large Language Models (LLMs); an Executive branch that maintains real-time situational awareness through a watcher-updated vector database; and a Judicial branch that evaluates each agent message with a rule-based Trust Score, while arbitrating LLMs detect malicious behavior and apply real-time incentives to restore trust. Stakeholder-side Negotiation Agents and the SRB-side Mediator Agent negotiate feasible, Pareto-optimal offers produced by a multi-objective optimizer, reaching a consensus intent in a single round, which is then deployed to Open and AI RAN controllers. Deployed on a private 5G testbed and evaluated with realistic traces of vehicle mobility, Agoran achieved significant gains: (i) a 37% increase in throughput of eMBB slices, (ii) a 73% reduction in latency of URLLC slices, and concurrently (iii) an end-to-end 8.3% saving in PRB usage compared to a static baseline. An 1B-parameter Llama model, fine-tuned for five minutes on 100 GPT-4 dialogues, recovers approximately 80% of GPT-4.1's decision quality, while operating within 6 GiB of memory and converging in only 1.3 seconds. These results establish Agoran as a concrete, standards-aligned path toward ultra-flexible, stakeholder-centric 6G networks. A live demo is presented this https URL&ab_channel=BubbleRAN.
Agoran: An agentic open marketplace for 6G RAN automation
Computer Networks, Artificial Intelligence for Future 6G Systems, 2025 / Also Submitted to ArXiV, 5 August 2025
Type:
Journal
Date:
2025-08-05
Department:
Communication systems
Eurecom Ref:
8344
Copyright:
© 2025 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PERMALINK : https://www.eurecom.fr/publication/8344