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Abstract

StressID is a new dataset specifically designed for stress identification from
unimodal and multimodal data. It contains videos of facial expressions, audio
recordings, and physiological signals. The video and audio recordings are acquired
using an RGB camera with an integrated microphone. The physiological data
is composed of electrocardiography (ECG), electrodermal activity (EDA), and
respiration signals that are recorded and monitored using a wearable device. This
experimental setup ensures a synchronized and high-quality multimodal data col-
lection. Different stress-inducing stimuli, such as emotional video clips, cognitive
tasks including mathematical or comprehension exercises, and public speaking
scenarios, are designed to trigger a diverse range of emotional responses. The
final dataset consists of recordings from 65 participants who performed 11 tasks,
as well as their ratings of perceived relaxation, stress, arousal, and valence levels.
StressID is one of the largest datasets for stress identification that features three
different sources of data and varied classes of stimuli, representing more than
39 hours of annotated data in total. StressID offers baseline models for stress
classification including a cleaning, feature extraction, and classification phase for
each modality. Additionally, we provide multimodal predictive models combining
video, audio, and physiological inputs. The data and the code for the baselines are
available at https://project.inria.fr/stressid/.

1 Introduction

While a healthy amount of stress is necessary for functioning in daily life, it can rapidly begin to
negatively impact health and productivity when it exceeds an individual’s coping level. Negative
stress can be a triggering or aggravating factor for many diseases and pathological conditions [16],
and frequent and intense exposures to stress can cause structural changes in the brain with long-
term effects on the nervous system [10]. Monitoring of stress levels could play a major role in the
prevention of stress-related issues, and early stress detection is vital in patients exhibiting emotional
disorders, or in high-risk jobs such as surgeons, pilots or long-distance drivers.

*Equal contribution.
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Figure 1: Data collection set-up of StressID.

In the last few years, machine and deep learning have been playing major roles in stress recognition
research. In practice however, building robust and reliable models for stress identification requires; 1)
understanding and integrating the differences between subgroups of the population to ensure bias
free applications, 2) integrating the relationships between physical and physiological responses to
stress, 3) studying responses to various categories of stressors, as the perception of stress differs
strongly from one individual to another. An essential element to such analyses is high-quality and
versatile multimodal datasets that include varied categories of stressors, and are recorded on large
and diverse populations. However, existing datasets do not answer these needs. They are generally
restricted in size (i.e. a few dozen of participants) and a majority is focused on a single source of
data (i.e. physiological signals, video or audio) – although multimodal datasets have considerable
advantages [26, 29]. Moreover, existing datasets often provide imbalanced subject responses, due
to both an inability of the recording protocol to elicit strong reactions and a lack of diversity in the
stimuli – making it difficult to deploy deriving analyses to real-life applications.

To address these limitations, we propose StressID, a novel multimodal dataset with facial video,
audio, and physiological data. To the best of our knowledge, StressID is one of the largest available
multimodal dataset in the field that includes varied stimuli. It is composed of 65 subjects and more
than 39 hours of annotated data in total. StressID is designed specifically for the identification of
stress from different triggers, by using a guided breathing task, 2 video clips, 7 different interactive
stressors, and a relaxation task. As illustrated in Figure 1, StressID uses a collection of wearable
sensors to record the physiological responses of the participants, namely, an Electrocardiogram
(ECG), an Electrodermal Activity (EDA) sensor, and a respiration sensor. The data is coupled with
synchronized facial video and audio recordings. Each task is associated with 6 different annotations:
4 scores from a self-assessment rating perceived stress and relaxation, along with valence and
arousal based on the Self-Assessment Manikin (SAM) [9]; and 2 discrete labels derived from the 4
self-assessments. These data annotations serve to train supervised models.

We summarize our main contributions as follows:

• A novel multimodal dataset focused on stress-inducing tasks, composed of ECG, EDA,
respiration, facial video, and audio recordings. The modalities are synchronized and anno-
tated with self-assessments from the participants evaluating their levels of relaxation, stress,
valence, and arousal.

• An easy to reproduce experimental protocol for recording behavioral and physiological
responses to diverse triggers, using wearable and global sensors.

• Instructions for using the presented dataset and an open-source implementation of sev-
eral baseline models for stress recognition from video, audio, and physiological signals
respectively, as well as multimodal models combining the three inputs.

The remainder of this paper is organized as follows. Section 2 provides an overview of the existing
datasets for stress recognition. Section 3 describes the dataset design and its contents. In Sections 4
we present multiple baselines for stress detection using machine learning. In Section 5 and 6, we
discuss the limitations and ethical considerations of our work. Finally, we summarize our work and
discuss future directions.
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2 Related work

Table 1 places StressID in the context of related stress recognition datasets. The SUS datasets [52]
gather the recordings of 35 subjects collected during aircraft communication training. This unimodal
collection of datasets only features audio recordings without self-assessments or external annotation
and employs an uncommon elicitation task. SADVAW [55] is a dataset composed of 1236 video clips
from 41 Korean movies, making the setting closer to the real world and including a broader range
of responses. However, it features video recordings exclusively, restricting deriving applications to
computer vision systems only. Among the works investigating the physiological aspect of stress,
DriveDB [25] collects physiological data from 9 subjects exposed to driving-related tasks. The lack
of self-assessment or external annotations significantly limits the accuracy of measuring stress. In
addition, the dataset is collected in the very specific setting of driving, with a narrow range of stressors
– considerably restricting its usage. WeSAD [48] and CLAS [36], two of the most widely explored
datasets for stress recognition, contain physiological data from 15 and 62 subjects respectively,
collected using wearable devices. The participants partake in various tasks, combining perceptive
stressors in the form of audiovisual stimuli, with several variations of the Trier Social Stress Test
(TSST) [3]. However, they do not include any behavioral modalities.

There exist a few multimodal datasets for stress recognition, such as MuSE [27] and SWELL-
KW [33]. They feature a broader set of modalities and are collected in laboratory environments
imitating real-life activities. MuSE participants are elicited through audiovisual and public speaking
tasks. SWELL-KW participants perform office work on several topics designed to elicit different
emotions. These datasets are limited in size with recordings of respectively 28 and 25 subjects.
Finally, the distracted driving dataset [54] gathers recordings of 68 subjects in the setting of simulated
driving with stress-inducing distractions. The lack of diversity in the stimuli restricts subsequent
applications to the setting of driving. Moreover, cardiac activity is acquired in terms of heart rate,
which does not allow the extraction of heart rate variability (HRV) measures, a key measure in the
identification of stress [30].

Comparison with the state-of-the-art. StressID aims to fill the gap in the existing related work.
It features both physiological and behavioral modalities, includes a large number of participants,
exploits varied stimuli, and includes participants’ replies to 4 self-assessment questions providing
insights on the subject’s emotional state. Although CLAS [36] and WeSAD [48] present similar
experimental set-ups, they focus on physiological modalities and do not include behavioral data.
Instead, StressID features three types of modalities: video, audio, and physiological signals
capturing complementary information. While MUSE [27] and SWELL-KW [33] are also multimodal
datasets recorded in similar conditions, they are very limited in size. On the contrary, with 65 subjects
recorded StressID is one of the largest datasets designed for stress identification. Finally, although
the size and modalities of the distracted driving dataset [54] are comparable to StressID, it relies on
very environment-specific stressors, whereas StressID includes emotional video-clips, cognitive
tasks, and social stressors based on public speaking, which represents a key aspect to guarantee the
collection of a wide range of responses. To summarize, StressID is the first multimodal dataset for
stress identification that is recorded on a large number of participants but also features a wide range
of stimuli ensuring more versatility in deriving applications.

Table 1: Comparison of StressID to related datasets.

Dataset #Subjects Modalities Stressors Data annotations
SUS 35 Speech Aircraft communication training Stressor-based
SADVAW - Video - External annotations
DriveDB 9 EMG, EDA, ECG, HR, Respiration Driving tasks Stressor-based

WeSAD 15 ECG, EDA, EMG, BVP,
Respiration, Temperature, Acceleration TSST, Audiovisual Stressor-based, PANAS [56],

STAI [51], SAM [9]

CLAS 62 ECG, PPG, EDA, Acceleration Cognitive load,
Audiovisual SAM

MuSE 28 EDA, HR, Breath rate, Temperature,
Face and upper body video, Audio Public speaking, Audiovisual PSS [34], SAM, External

annotations

SWELL-KW 25 ECG, EDA, Face and upper body video,
Posture, Computer logging

Office work with interruptions
and time pressure

NASA task load [24], SAM,
Stress assessment

Distracted Driving
dataset 68 EDA, HR signal, Respiration, Face video,

Driving performances Simulated driving with distractions Stressor-based, NASA task
load, SAM

StressID 65 EDA, ECG, Respiration, Face video,
Speech

Cognitive load, Public speaking,
Audiovisual SAM, Stress assessment
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BLOCK 1:
BREATHING

BLOCK 2:
2 VIDEO CLIPS

BLOCK 4:
RELAX

BLOCK 3:
7 INTERACTIVE STRESSORS

+ SELF ASSESSMENT

+ NEUTRAL BASELINE + MOST STRESSFUL

+ SELF ASSESSMENT + SELF ASSESSMENT+ SELF ASSESSMENT

Figure 2: Overview of the experimental protocol. The experiment consists of 11 tasks divided into
four blocks: a guided breathing task, 2 emotional video clips, 7 interactive stressors, and a relaxation
task.

3 StressID Dataset

StressID takes a step towards building more robust and reliable applications for automated stress
identification by enabling the design of versatile and bias-free algorithms. To achieve this, StressID
features responses to several categories of stress-inducing stimuli to account for the variability of
responses from one individual to another, rather than focusing on a single task. In addition, the
large number of participants of StressID enables analyses of the demographics associated with
stress, based on factors such as gender or age, thus advancing towards reducing representation bias
by integrating these differences in subsequent algorithms. Ultimately, the design of the StressID
dataset supports a variety of learning pipelines, by offering possibilities for the analysis of subject-
specific, task-specific and modality-specific responses to stress. We describe the design of StressID
in Section 3.1. We then introduce the resulting dataset in Section 3.2, and outline our data annotation
process in Section 3.3.

3.1 Dataset Design

3.1.1 Experimental Protocol

Figure 2 illustrates the experimental protocol used to collect StressID. It consists of 11 tasks
separated by self-assessments and grouped into 4 blocks: guided breathing, watching emotional video
clips, a sequence of interactive tasks, and a relaxation phase. Tasks have been designed to elicit 3
different categories of responses; 1) stimulate the audiovisual cortex of the participants, 2) increase
the cognitive load by soliciting attention, comprehension, mental arithmetic or multi-tasking abilities,
and 3) elicit psycho-social stress leveraging on public speaking as a stressor. All stimuli are easy to
implement and do not require any special setup [5]. The full instructions given to participants are
provided in Appendix D.2.

Guided breathing. The first block of the protocol consists of the single task of Breathing. The
participants watch a guided breathing video of 3 minutes. It aims to relax and reset to neutral the
emotional state of the subjects. This recording is used as a baseline for the non-verbal neutral state of
each participant. After the breathing task, the participants count forward for 1 minute.

Emotional video-clips. This block consists in watching 2 emotional videos clips, retrieved from the
FilmStim database [47]. These videos have been selected to elicit specific emotional responses.

• Video1 : an extract from the movie There’s something about Mary, selected to elicit low
arousal and positive valence in the participants.

• Video2 : an extract from the movie Indiana Jones and the Last Crusade, selected to elicit
high arousal and negative valence.

Interactive tasks. This block consists of a sequence of 7 interactive stressors based on well-
established clinical methods to induce stress [7]. All the tasks have a strict requirement for response
in 1 minute and the order of the stressors is designed to be unexpected to the participants.
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• Counting1 : a Mental Arithmetic Task (MAT) designed to increase the participants’ cognitive
load through arithmetic operations with a varying range of difficulty. In this task, the
participants receive the instructions to count backwards from 100 subtracting 3 as fast as
they can.

• Counting2 : another MAT of increased difficulty. Participants are asked to count backward
from 1011 subtracting 7 as fast as they can.

• Stroop : a variant of the Stroop Color-Word Test [53], selected to increase the cognitive load
by soliciting the attention and reactivity of the participants.

• Speaking : a Social Evaluative Task (SET), leveraging public speaking as a social stressor.
The subjects are instructed to explain their strengths and weaknesses, emulating stressful
job interview conditions.

• Math : a task designed to increase the mental workload. The participants are asked to
resolve 20 mathematical problems in one minute.

• Reading : a task composed of 2 phases and designed as a TSST variation. Participants
have to read a text, in the first step, and then explain what they read, in the next step, thus
simultaneously soliciting comprehension abilities and using speaking as a stressor.

• Counting3 : a MAT with added difficulty. Participants are instructed to count backwards
from 1152 subtracting 3, as fast as they can, while repeating an independent hand movement.
This task is designed to increase the mental workload by soliciting participants’ multi-tasking
abilities.

At the end of the third block, the participants are asked to designate the task perceived as most
stressful.

Relaxation. The last block of the experimental protocol is solely composed of the Relax task. It
consists of a 2 minute and 30 seconds long relaxation part, where participants are instructed to watch
a relaxing video [23].

3.1.2 Sensors

Three different physiological signals are collected in StressID: electrocardiogram (ECG), electro-
dermal activity (EDA), and respiration signal. They are recorded using the BioSignalsPlux acquisition
system*. The BioSignalPlux kit consists of a 4-channel hub communicating via Bluetooth with the
OpenSignals (R)evolution platform for data visualization and acquisition, connected to an ECG,
EDA, and a respiration sensor. The hub ensures the synchronized recording of up to 4 sensors
simultaneously. The ECG is acquired with 3 Ag/AgCl electrodes located on the ribs of the non-
dominant side of the subjects. The EDA is measured with 2 Ag/AgCl electrodes attached to the
palm of the non-dominant hand. The respiration is measured through a chest belt with an integrated
piezoelectric sensing element. The selected devices have a high signal-to-noise ratio [42, 43, 44], and
all physiological signals are acquired with a sampling rate of 500 Hz and resolution of 16 bits per
sample.

The video and audio are acquired using a Logitech QuickCam Pro 9000 RGB camera with an
integrated microphone. The video is acquired with a 720p resolution and a rate of 15 frames per
second. The audio is recorded at a sampling rate of 32kHz and a resolution of 16 bits per sample.

3.2 Dataset Description

3.2.1 Recruitment and Recording

Most of the participants of StressID are Science, Technology, Engineering, and Mathematics
(STEM) students and workers. In total, 65 healthy participants were recruited on a voluntary basis,
without compensation. They included 18 women and 47 men of ages ranging between 21 and 55
years old (29y.o. ± 7). Among the participants, 32% were master students and interns, 20% PhD
students, and the remaining 48% represented diverse tertiary professions. All subjects were required
to have sufficient proficiency in English and they were requested to sign a consent form to participate.

*biosignalsplux, PLUX wireless biosignals S.A. (Lisbon, Portugal)
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The participants could either consent to, Option A: research use and public release of all their
recorded data, including identifying data (i.e. physiological, audio, and video). Option B: research
use of all their recorded data, but no public release of identifying data (i.e. only physiological and
audio data, but no video). Among the 65 participants, 62 opted for option A and 3 opted for option B
(2 women and 1 man).

Each participant was recorded in a single session, lasting approximately 35 minutes. They were
instructed not to smoke, intake caffeine, or exercise 3 hours before the experiment. At the beginning
of each session, they were introduced to the purpose and content of the study. The experiments are
conducted entirely in English. The experimental protocol was identical for all participants, and the
experimenter was always present in the room during the recording.

3.2.2 Dataset Composition

Following data collection, we split each recorded session into individual tasks: one 3 minutes
breathing recording (block 1), 2 recordings corresponding to the watching of the video clips of
respectively 2 and 3 minutes (block 2), 7 separate 1-minute recordings of the interactive tasks (block
3), and a 2 minute and 30 seconds long relaxation recording (block 4). As the guided breathing,
the video clips and the relaxation parts do not carry meaningful audio, the audio part of the dataset
consists of the 7 talking tasks only. During the acquisitions, due to camera malfunctions, 8 video and
audio recordings were damaged. More information about the available tasks for each modality can be
found in Appendix A.1. After splitting, StressID is composed of 711 distinct annotated recordings
of the physiological modalities, 587 annotated videos, and 385 annotated audio recordings. In total,
the final task-split dataset amounts to approximately 19 hours of annotated physiological data, 15
hours of annotated video data, and 6 hours of annotated audio data, thus amounting to more than
39 hours of data in total. Each task is identified in the dataset by subjectname_task, where the
task names are as described in Section 3.1.1. This convention facilitates different types of analyses,
whether subject-specific or task-specific.

3.3 Data Annotation

Each task is annotated using the answers to self-assessment questions. The first 2 questions establish
the participants’ perceived stress and relaxation levels on a 0-10 scale. Additionally, they answer the
SAM [9] to assess their valence and arousal on a 0-10 scale. Research suggests relaxation and stress
conditions can be described in different quadrants of the arousal-valence space. For instance, high
arousal and negative valence are characteristics of emotional stress induced by threatening stimuli [15],
while low arousal and positive valence are characteristics of a calm and relaxed state [37].

The distributions of the StressID self-assessments are reported in Figure 3. The analysis of the
distributions highlights a positive correlation between stress and arousal, as well as relax and valence.
This suggests that across subjects and tasks, a high arousal is associated with a higher level of
stress, and a positive valence corresponds to a higher level of relaxation. In addition, the marginal
distributions of stress and relax ratings (Figure 3) highlight a balance in the perceived stress and
relaxation levels of the participants across the whole experiment, suggesting that the experimental
protocol of StressID can arouse proportional instances of stress and relaxation. Furthermore, the
distribution of arousal is significantly skewed towards a high rating across the dataset, while valence is
centered around a neutral value, highlighting the ability of the protocol to create a high involvement in
the participants and elicit strong responses. An extended analysis of the self-assessment distributions
analyses can be found in Appendix E.

We propose 2 discrete labels that can be used to train supervised models: a 2-class label and a 3-class
one. The 2-class label is computed using the stress self-assessment of each task by splitting the 0-10
scale at 5. Precisely, tasks with self-assessment of stress below 5 are considered not stressed (0)
while tasks with self-assessment equal or above 5 are stressed (1). The 3-class label is based on
the results outlined by [15, 37], which are in line with the observations drawn from Figure 3. It
allows the prediction of relaxed vs. neutral vs. stressed. We considered a subject to be relaxed (0)
for a task where they reported a valence rating above 5, an arousal rating below 5, and a perceived
relaxation rating above 5. Similarly, we label tasks with arousal levels above 5, valence levels below
5, and perceived stress levels above 5 as stressed (2), and neutral (1) otherwise.
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(a) Sress/Arousal (b) Relax/Valence

Figure 3: Distribution of the self-assessment answers. (left) Joint and marginal distributions of stress
and arousal. (right) Joint and marginal distributions of the relax and valence ratings.

4 Baselines

We implement several unimodal and multimodal baselines combining features extracted from video,
audio, and physiological inputs. We train the models to perform 2-class classification, i.e. binary
discrimination between stressed and not stressed, as well as 3-class classification. In all the ex-
periments, we generate 10 random splits, using 80% of the tasks for training, and 20% for testing
for each split. The results are averaged over the 10 repetitions. To ensure robustness to potential
imbalance resulting from the train-test splits, the results are assessed using the weighted F1-score
and the balanced accuracy on the test data. The full list of extracted features, additional experiments,
model hyperparameters, and training details are reported in Appendix F. The implementation of all
the baselines can be found at https://github.com/robustml-eurecom/stressID.

4.1 Unimodal Baselines

Each unimodal baseline is trained and tested on all available tasks of the corresponding modality, i.e.
715, 587, and 385 tasks respectively for the physiological, video, and audio baseline. In the following,
we describe the baselines for each modality. The obtained results are reported in Table 2.

Physiological Signals. In line with the literature on stress recognition from physiological signals [5,
20, 21], we propose a baseline including pre-processing of the signals, feature extraction, and
classification. In a first step, the ECG, EDA, and respiration signals are filtered with Butterworth
filters to reduce high-frequency noise and baseline wander. Then, 35 ECG features, 23 EDA, and
40 respiration features are extracted. These include HRV features in the time domain including the
number of R to R intervals (RR) per minute, the standard deviation of all NN intervals (SDNN), the
percentage of successive RR intervals that differ by more than 20ms and 50ms (pNN20 and pNN50),
or the root mean square of successive RR interval differences (RMSSD), as well as frequency-domain,
and non-linear HRV measures. We have extracted statistical features of the Skin Conductance Level
(SCL) and Skin Conductance Response (SCR) components of the EDA, including the slope and
dynamic range of the SCL, along with time domain features including the number of SCR peaks
per minute, the average amplitude of the peaks, and average duration of SCR responses. In addition,
we have extracted Respiration Rate Variability (RRV) features in the time and frequency domains.
The resulting handcrafted (HC) features are then classified using classical Machine Learning (ML)
algorithms: a Random Forests (RF) classifier, Support Vector Machines (SVM), and a Multi-Layer
Perceptron (MLP) with hyperparameters chosen by Cross-Validation (CV).

7

https://github.com/robustml-eurecom/stressID


Table 2: Performances of unimodal baselines for the classification of stress. Each baseline is trained
and tested on all available tasks of the corresponding modality.

2-class 3-class
Baseline F1-score Accuracy F1-score Accuracy

Physio. HC features + RF 0.73 ± 0.02 0.72 ± 0.03 0.55 ± 0.04 0.56 ± 0.03
Physio. HC features + SVM 0.71 ± 0.02 0.71 ± 0.02 0.59 ± 0.04 0.59 ± 0.03
Physio. HC features + MLP 0.70 ± 0.03 0.70 ± 0.03 0.54 ± 0.04 0.53 ± 0.04

AUs + kNN 0.70 ± 0.04 0.69 ± 0.04 0.54 ± 0.05 0.53 ± 0.05
AUs + SVM 0.69 ± 0.04 0.69 ± 0.04 0.55 ± 0.05 0.54 ± 0.04
AUs + MLP 0.70 ± 0.03 0.70 ± 0.03 0.55 ± 0.03 0.55 ± 0.03

Audio HC features + kNN 0.67 ± 0.06 0.60 ± 0.05 0.53 ± 0.04 0.52 ± 0.04
Audio HC features + SVM 0.61 ± 0.06 0.54 ± 0.03 0.53 ± 0.08 0.48 ± 0.04

W2V 2.0 classifier 0.70 ± 0.02 0.66 ± 0.03 0.56 ± 0.04 0.52 ± 0.04

Video Data. We propose a baseline employing Action Units (AU) and eye gaze for the classification
of stress. AUs are commonly used as features in stress recognition applications [22, 27, 2]. They are
fine-grained facial muscle movements [18], each relating to a subset of extracted facial landmarks [40].
Each AU is described in two ways: presence, if the AU is visible in the face, and intensity, indicating
how intense the AU is on a 5-point scale (minimal to maximal). After downsampling the recordings
to 5 frames per second, we use the OpenFace library [8] to extract eye gaze and AUs from each
video frame. We extract the following AUs: 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26,
28, and 45. As eye gaze features, we use two gaze direction vectors computed individually for each
eye by detected pupil and eye location. The averages and standard deviations of each AU and eye
gaze directions are computed across time frames. The resulting 84-component vector is used as input
to several models: a k-Nearest Neighbors (kNN) algorithm, an SVM, and an MLP with 4 layers of
width 256. In line with [27], the number of layers and layer width of the MLP are chosen by CV in
{2,3,4} and {64, 128, 256} respectively. We use ReLU activation and the MLP is trained for 100
epochs with cross-entropy loss optimized using Adam [31] with an initial learning rate of 1e�3.

Audio Data. We propose two baselines for speech signals: the first employs HC features and ML
algorithms, and the second is built on the Wav2Vec 2.0 (W2V) model [49, 6]. Both techniques involve
downsampling from the original 32 kHz audio to 16 kHz, and the application of amplitude-based
voice activity detection (VAD) [32] prior to feature extraction to eliminate non-speech segments.
The first baseline relies on a plethora of specific audio features [46, 4] widely used in the literature
on emotion recognition from speech [1, 5, 35]. These include Mel Frequency Cepstral Coefficients
(MFCCs) and their first and second derivatives, which characterize the short-term power spectrum
and its dynamics. The spectral centroid, bandwidth, contrast, flatness, and roll-off, which together
provide a rich statistical representation of the spectral shape. Harmonic and percussive components
are also extracted, with tonal centroid features being computed for the harmonic component. The zero-
crossing rate is a simple measure of the rate of sign changes; the rate of zero-crossings relates directly
to the fundamental frequency of the speech signal. Last, we include tempogram ratio features [39]
which represent local rhythmic information. We compute the mean and standard deviation over time
for all features, thereby resulting in feature vectors for each, which are then concatenated to form a
comprehensive feature vector of 140 components, and used as input for ML algorithms.

The second baseline employs a large, pre-trained W2V model. The W2V 2.0 model produces features
capturing a wealth of information relevant to diverse tasks including emotion recognition [11, 50, 14].
Features are extracted every 20 ms and averaged over time to obtain a single 513-component
embedding per utterance, and are then classified using a linear classification layer optimized with
Adam, cross-entropy loss, and an initial learning rate of 1e�3, until convergence.

4.2 Multimodal Baselines

Multimodal baselines that combine the features extracted from all 3 sources are evaluated on the
tasks that feature all modalities only, i.e. 370 tasks, to avoid learning with severely missing values.
This subset of StressID is composed of talking tasks exclusively, i.e. all tasks without the audio
modality are excluded. In this setting, the dataset presents a strong imbalance in the labels (70%
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Table 3: Performances of multimodal baselines for the classification of stress, compared to unimodal
models. All baselines are trained and tested only on tasks featuring all modalities, i.e. 370 tasks.

2-class 3-class
Baseline F1-score Accuracy F1-score Accuracy

Physiological only 0.66 ± 0.05 0.58 ± 0.04 0.50 ± 0.05 0.48 ± 0.06
Video only 0.67 ± 0.03 0.62 ± 0.04 0.58 ± 0.05 0.56 ± 0.05
Audio only 0.67 ± 0.04 0.62 ± 0.04 0.56 ± 0.06 0.54 ± 0.06

Feature fusion + SVM 0.64 ± 0.09 0.56 ± 0.05 0.55 ± 0.06 0.51 ± 0.05
Feature fusion + MLP 0.66 ± 0.04 0.61 ± 0.03 0.51 ± 0.07 0.51 ± 0.07
Feature fusion + DBN 0.58 ± 0.06 0.52 ± 0.05 0.30 ± 0.09 0.32 ± 0.04

SVM + Sum rule fusion 0.72 ± 0.05 0.64 ± 0.05 0.62 ± 0.05 0.58 ± 0.07
SVM + Product rule fusion 0.71 ± 0.05 0.63 ± 0.05 0.61 ± 0.05 0.56 ± 0.07

SVM + Average rule fusion 0.72 ± 0.05 0.65 ± 0.05 0.63 ± 0.05 0.58 ± 0.07
SVM + Maximum rule fusion 0.72 ± 0.05 0.64 ± 0.05 0.61 ± 0.06 0.57 ± 0.07

stress). We use Minority Over-sampling Techniques (SMOTE) [13] to balance the training set in each
of the 10 repetitions, and leave the test sets untouched.

We propose fusion models combining all features using the most prominent fusion methods in the
literature: feature-level and decision-level fusion [1, 38]. For feature-level fusion, unimodal HC
features are combined into a single high-dimensional feature vector, used as input for learning
algorithms. Similarly to [28, 12], we evaluate feature-level fusion combined with SVM, MLP
classifiers, and Deep Belief Networks (DBN). For decision-level fusion, following [57, 45], we train
independent SVMs for each modality using the HC features as input, and integrate the results of the
individual classifiers at the decision level, i.e. the results are combined into a single decision using
ensemble rules. The results for all multimodal baselines for the 2-class and 3-class classification are
reported in Table 3. To ensure fairness in the comparison, the multimodal baselines are evaluated
against best-performing HC and ML-based unimodal baselines (Section 4.1), trained on the subset
of the 370 tasks featuring all modalities. Additional results for all other modality combinations are
reported in Appendix F.2.2.

5 Limitations

First, this dataset is recorded in a controlled environment specifically designed to elicit responses.
Experiments conducted in laboratory settings do not take into consideration the external factors that
contribute to the psychological mental state of participants and typically assume a stress reaction is
an isolated occurrence. In reality, human emotions are complex and are influenced by combinations
of factors. In addition, the process of attaching electrodes to the participants may be stressful in
itself. Therefore, the signals recorded in this setting are not necessarily representative of real-life
situations. In consequence, although models built on the StressID dataset can learn to reliably
recognize a response to stress-inducing stimuli, the discrimination between positive and negative,
or short-term and long-term stress is a more sensitive task. Second, relying on self-assessed scales
for data annotation is a participant-subjective process, and can lead to bias in subsequent analyses.
Perception of stress and relaxation can vary a lot from one participant to another. Nevertheless,
analyses described in Section 3.3 highlight a coherent distribution of the self-reported annotations
across participants and the whole experiment. Third, although all participants recruited for the
study are proficient in English, the act of speaking English itself can be stress-inducing for non-
native speakers. Fourth, the audio component of the dataset suffers from an uneven distribution
of labels, as the verbal tasks are associated with higher levels of stress. Fifth, StressID suffers
from missing modalities for some participants. Finally, StressID presents a gender imbalance
representative of the female/male ratio in STEM studies and workforce [19]. This is a limitation
StressID shares with competitor datasets [33, 54, 48, 36, 27], and a common issue in human data
collection, in general [17, 41]. Additional experiments sensitising users to the effect of gender bias
and demonstrating how StressID can effectively be used to build equitable applications, are reported
in Appendix F.2.3.
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6 Ethical Considerations and Dataset Accessibility

The recording and usage of human activity data are associated with ethical considerations. The
StressID project is approved by the ethical committee of the Université Cote d’Azur (CER). The
experiments have been conducted under agreement n° 2021-033 for data collection, and n° 2023-016
for the publication of the dataset. The participants explicitly consent to the recording of their session,
the dataset creation, and its release for research purposes following General Data Protection Rules
(GDPR). The personal information (sex, age, education), and the acquired physiological and audio
signals are pseudonymized, and an alphanumeric code is given for each participant. Video data can
not be anonymized and is treated as sensitive data.

Given the identifying nature of the facial videos, the dataset is made accessible through open
credentialized access only, for research purposes. Users are required to sign an end-user license
agreement to request the data. Once validated a secured set of credentials is granted to access to the
dataset. The dataset uses a proprietary license for research purposes and it is hosted on Inria servers
using storage intended for long-term availability. The code uses an open-source license. We are
aware that despite all precautions, the dataset can be misused by bad-intentioned users. The data and
the code for the baselines are available at https://project.inria.fr/stressid/.

Lastly, systems that use the dataset for modeling and understanding the mechanisms of human stress
conditions need to be aware of the potential imbalance in representation in the dataset. Participants for
the data collection were included in our dataset without restrictions on gender, race, age, or education
level – instead favoring sample size.

7 Conclusion

We present StressID, a dataset for stress identification featuring three categories of data modalities
and three different types of stimuli. The experimental protocol designed to collect the StressID
dataset is easy to replicate and can be adapted to additional sensors or stressors. The equipment used
for the data collection is affordable, and the selected devices guarantee low noise in the recordings.

The multimodal nature of StressID offers a large set of possible uses cases and applications. On
one hand, diverse modalities carry complementary information that can be jointly exploited: video
and audio capture the behavioural component of emotions, the reactions that are visible from outside,
while the physiological signals capture valuable internal states not visible on camera such as cardiac
activity, or skin sweating. By providing access to multiple synchronized modalities, StressID
enables cross-modal analyses that have the potential to improve the understanding of the relationships
between video, audio, and physiological responses to stress. On the other hand, the dataset design
also offers the possibility to develop models of different natures, by focusing on a single modality.
Moreover, it allows a wide range of applications, including subject-specific, or task-specific studies.

StressID dataset can contribute to advance research in multiple fields. First, it has the potential
to improve the understanding of the sources, demographics, and both physical and physiological
mechanisms of stress responses. It is designed for the development of reliable algorithms for stress
identification that can improve the quality of life of our society by helping prevent stress-related
issues. For instance, early stress recognition can be beneficial for people suffering from neurological
or developmental disorders with emotion deregulation, such as autism, for whom the increase of
stress can cause disruptive behaviors. Second, StressID can help improve affect understanding, as
it offers the possibility to analyze and understand the correlation patterns between the distributions
of perceived stress and emotion, how these correlations relate to different categories of stimuli,
or how they impact subsequent stress and emotion recognition algorithms. Finally, StressID is
useful to the machine learning and deep learning communities as well, as it can be used to further
evolve multimodal learning algorithms, to develop strategies for learning with unevenly represented
modalities, or to study how to make algorithms learning with human data more reliable.

To foster reproducibility, StressID also offers a set of baseline experiments. Although the proposed
models focus on predicting two discrete labels designed to illustrate the predictive potential of our
dataset, they represent a good starting point for future work, to which researchers and developers can
benchmark their work. In this context, a natural extension of this work would be the implementation
of a web service that tracks and centralizes the performances of models developed using StressID.
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A Overview of Dataset Contents

The StressID dataset contains high-resolution synchronized data from a suite of wearable sensors
and global sensors. The dataset provides answers to 4 self-assessment questions in terms of perceived
stress, relaxation, arousal, and valence, for each task. These annotations can be used to create robust
labels for supervised learning. Fig. 1 presents a summary of the dataset contents and size. The
remainder of the supplementary materials provide all additional information about the StressID

project.

A.1 Dataset Size

StressID contains recordings of 65 subjects. Among the 65 participants, 62 agreed to the public
release of all their data and 3 opted for the release of non-identifying data only, i.e. physiological
and audio. During the acquisitions, due to anomalous camera malfunction, the video and/or audio
recordings of 9 participants – including 1 participant who chose to not share the video data, were
damaged. Consequently, the StressID dataset contains physiological recordings for 65 participants,
video recordings for 54 participants, and audio for 55 participants.

Following data collection, each recorded session is split into individual tasks: one 3-minutes breathing
recording, 2 recordings corresponding to the watching of the emotional video clips of respectively
3 and 2 minutes, 7 separate 1-minute recordings of interactive tasks, and a relaxation recording of
2 minutes and 30 seconds, resulting to up to 11 tasks per subject for the physiological and video
modalities, and 7 tasks per subject for the audio component composed of verbal-tasks only. Besides
the 9 recordings that do not have video or audio, 6 individual task recordings are removed from the
public dataset due to technical issues during the execution of the task.

Ultimately, the entire StressID dataset consists of 711 tasks for the physiological data, 587 tasks
for video data, and 385 tasks for audio data. In total, it represents approximately 1119 minutes
of physiological signals recordings, 918 minutes of video recordings, and 385 minutes of audio.
Table 1 summarizes the number of instances and total duration of the annotated tasks across the
65 participants, in each modality. More information about missing modalities or missing tasks is
provided on the technical file available on the StressID webpage*.

Table 1: Counts and durations of each tasks, in each modality.

Task/Stressor Count physiological (min) Count video (min) Count Audio (min)
Breathing 65 (195) 52 (156) 0 (0)

Video1 64 (185) 52 (150) 0 (0)
Video2 64 (126) 53 (104) 0 (0)

Counting1 65 (65) 54 (54) 55 (55)
Counting2 65 (65) 54 (54) 55 (55)

Stroop 65 (65) 54 (54) 55 (55)
Speaking 65 (65) 54 (54) 55 (55)

Math 65 (65) 54 (54) 55 (55)
Reading 65 (65) 54 (54) 55 (55)

Counting3 65 (65) 54 (54) 55 (55)
Relax 63 (158) 52 (130) 0 (0)
Total 711 (1119) 587 (918) 385 (385)

*https://project.inria.fr/stressid/dataset-composition-details/
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StressID Dataset Facts
Dataset StressID

Motivation

Summary A multimodal dataset for stress identification from video, speech

and physiological data from wearable sensors.

Example Use Cases Stress identification, emotion recognition, task

classification

Original Authors H. Chaptoukaev, V. Strizhkova, M. Panariello,

B. D’Alpaos, A. Reka, V. Manera, S. Thümmler, E. Ismailova, N. Evans, F.

Bremond, M. Todisco, M. A. Zuluaga, L. M. Ferrari

Metadata

URL https://project.inria.fr/stressid/

Keywords Stress recognition, multimodal, wearable sensors

Format .csv, .txt, .mp4, .wav

Ethical review Approved by CER/CERNI

Licence Proprietary

First release 2023

Sensors

ECG BioSignalsPlux ECG sensor

EDA BioSignalsPlux EDA sensor

Respiration BioSignalsPlux Piezoelectric chest-belt

RGB Camera Logitech QuickCam Pro 9000 RGB

Audio QuickCam Pro 9000 integrated microphone

Data Annotations

Self-assessments Stress, relax, arousal, valence

Labels for supervised learning Binary stress, 3-class stress

Annotated Tasks

Relaxing Guided breathing, relaxation

Audiovisual Video clips

Interactive stressors Cognitive tasks, public speaking, multi-tasking

Participants

Count 65

Gender 72%Male, 28%Female

Age 29 ± 7 years

Background 32%Master students, 20%PhD students, 48%Tertiary

Dataset Size

Total size 5.29GB

Physiological total duration across subjects and across tasks 1119 min

Video total duration across subjects and across tasks 918 min

Audio total duration across subjects and across tasks 385 min

Figure 1: A dataset summary card for StressID, constructed based on [2, 5].
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Figure 2: Organisation of the StressID Dataset repository. The dataset is grouped by modality. In
each modality repository, the tasks are grouped by subject in separate repositories.

A.2 Data Formats and Organization

The organization of the dataset at download is illustrated in Fig. 2. Each individual task is identified
in the dataset by subjectname_task. For each modality, all tasks are grouped by subject into
separate repositories. Additionally, we provide 3 .csv files containing self-assessments and labels;
the self_assessments.csv file gathers perceived levels of relaxation, stress, arousal and valence
for each subject and each task, labels.txt corresponds to the labels used to compute the StressID
baselines, and labels_supplementary.txt provides additional labels used in supplementary
experiments described in F.

For each task, data from all wearable sensors is organized into a single .txt file, making it easily
usable with any programming language including Python, Matlab, or C++. Each file contains 3
synchronized entries corresponding to the ECG, EDA, and respiration data respectively. All the
physiological signals are sampled at 500Hz with a resolution of 16 bits per sample.

In a similar fashion, for each task, the video data from the Logitech QuickCam Pro 9000 RGB camera
is contained in a .mp4 generated video file. All videos are acquired at a 720p resolution and sampled
at 5 frames per second. Audio data is recorded at 32kHz with 16 bits per sample. After cutting and
processing, the signals are downsampled to 16kHz. The audio for each task is included in the dataset
as an uncompressed .wav file.

B Dataset Publishing and Usage

B.1 Dataset Hosting and Licensing

The dataset and code are available for researchers. The dataset uses a custom non-commercial
proprietary license for research purposes only. It is made accessible through credentialized access.
Users are required to sign an end-user license agreement to request the data. Once validated, a
link to the repository with a username and a password will be given to grant access. TheStressID
dataset represents 5.29 GB of data. It is hosted on Inria servers, using storage intended for long-term
availability, and ensuring sufficient space to hold all collected data. This space is maintained by the
INRIA infrastructure team. It is also easily accessible to the research team, allowing new data to
be added as it is collected, or withdrawn if needed. This storage thus, allows the dataset to be both
dynamic and persistent. The front-end website* describes the StressID project, access instructions for
downloading the data, the adopted sensors, the recording framework, dataset composition details,
and the baseline models. It is hosted on Inria servers intended for long-term persistent websites
and also maintained by the infrastructure team. The website acts as a portal pointing to all relevant
visualizations, data, code, and instructions. The code for the baselines and analyses uses an open-
source 3-Clause BSD License [6], and is available on GitHub*. It includes ReadMe files describing the

*https://project.inria.fr/stressid/
*https://github.com/robustml-eurecom/stressID
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code structure, installation, and usage. In addition, third-party services for archival code repositories
will be explored.

B.2 Intended Uses and Ethical Considerations

StressID is conceived to further develop research on automated stress recognition. The dataset
is a resource of annotated synchronized physiological signals, videos, and audio data, captured
while subjects are involved in tasks specifically designed to elicit stress reactions. Various use cases
include extracting characteristics of stress from each modality, analyzing correlations between various
modalities, analyzing how the modalities relate to specific tasks, training learning pipelines for the
identification of stress in diverse verbal and non-verbal tasks, and training pipelines to discriminate
between audiovisual stimuli, stressors designed to increase the cognitive load or stressors based on
public speaking.

The dataset is made available for research purposes. All personal information about the participants
including, sex, age, and background of participants, although not published, is pseudonymized.
The acquired physiological and audio signals are also pseudonymized, while video data can not be
anonymized. Although the participants explicitly consent to the recording of their session, the dataset
creation, and its public release for research purposes, no attempts should be made to actively identify
the subjects included in the dataset. The data should also not be modified or augmented in a way that
further exposes the subjects’ identities.

In general, recording and usage of human activity data is associated with high ethical implications,
including privacy, bias, and impact on society. If new projects use the StressID experimental
protocol to replicate the study, using similar sensors and identifying modalities, the privacy of
any new subjects should be protected, and the implications of the project clearly described to the
participants. In addition, future applications that use the StressID protocol and/or dataset for
building and training new learning pipelines, should consider the societal implications of their work.
StressID is designed as a resource for improving the monitoring, modeling, and understanding of the
mechanisms of human stress conditions. All intended applications have the potential to improve the
quality of life of the population by helping prevent stress-related issues. However, researchers need to
be aware of potential representation bias in their analyses. Indeed, StressID and subsequent analysis
may present an imbalance in gender, race, age, or background of the participants – which could lead to
unanticipated consequences. Additional information is provided about the participants’ demographics
along with the dataset and should be taken into account when developing new applications based on
the StressID dataset.

We are aware that despite all the precautions, the dataset can be misused by bad-intentioned users.
The authors declare that they bear all responsibility in case of any violation of rights during the
collection of the data or other work, and will take appropriate action when needed, e.g., by removing
data with such issues.

C Human Subjects Considerations

The StressID project was approved by the Institutional Review Board (IRB) of Université Côte
d’Azur, namely the Committee on Ethics for Non-Interventional Research (CERNI/CER). The
project has been conducted under agreement n° 2021-033 for data collection, and n° 2023-016
for the publication of the dataset. Subjects were recruited by email, and word of mouth primarily.
They are composed of 32% Master students, 20% PhD students. The other 48% represent tertiary
professions. Before the start of the experiment, they were introduced to the purpose and contents of
the project, and public release modalities and privacy concerns were described. Participants signed
a recording consent form and a media release form. Each subject participated on a voluntary basis.
Each experiment lasted approximately 50 minutes including preparing sensors, calibration, and the
35 minutes long experiment.

Safety risks include those associated with the wearable sensors used in StressID. Notably, the
use of Ag/AgCl electrodes can cause discomfort or cutaneous irritations in subjects – however,
using clinical grade electrodes during the data collection campaign, we did not encounter any issue
of this type. In addition, the wearable devices used in StressID should not be used in patients
with implanted electronic devices of any kind, including pacemakers, electronic infusion pumps,
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stimulators, defibrillators, or similar. All subjects are made aware of this fact, and cannot participate
in the experiment if they fall in any of the mentioned categories. The experiment presented no safety
risks associated with tasks. Participants were informed they could stop the experiment at any time.

Given the identifying nature of the videos, privacy is a primary concern in this project. Therefore,
the data collection protocol of StressID considered the privacy risks for the participants as much
as possible. The goals and implications of publishing personally identifiable facial videos were
clearly described to each participant, and a dedicated media release consent form was signed to
acknowledge participants’ willingness for their video to be part of the public release of the data.
Ultimately, participants could select between two options: Option A: research use and public release
of all their recorded data, including identifying data (i.e. facial videos), and Option B: research use
of all their recorded data, but no public release of identifying data. The videos of the participants
who selected option B are removed from the public version of the dataset.

The subjects are also informed that they can withdraw their consent at any time. In that case, the data
collected prior to the creation of the database will be destroyed. If the database has already been
created and the subjects have given consent to the use of physiological data or audio, as these are
pseudo-anonymous, they cannot be deleted. Video data will not be shared with other people after
the withdrawal request. However, data that has already been shared cannot be modified. Once the
database has been shared with other authorized researchers, the subjects will no longer be able to
exercise their right of withdrawal on that copy of the database.

D Experimental Protocol

D.1 Preparation and Synchronisation of Sensors

Calibration and synchronization of the devices are done using the Event Annotation functionality
of the OpenSignals (R)evolution platform. Before starting, the subjects are instructed to take a
comfortable sitting position.

First, the wearable sensors are prepared. The BioSignalsPlux* acquisition system is mounted with the
ECG sensor, the EDA sensor, and the piezoelectric respiration belt. The experimenter starts by placing
3 Ag/AgCl electrodes on the ribcage of the subjects to capture the ECG signal. The BioSignalsPlux
ECG sensor is designed to record single lead ECG signals using 3 derivation configurations. Then,
2 Ag/AgCl electrodes are attached to the palm of the non-dominant hand of the subject to acquire
the EDA signal. Finally, the experimenter helps the subjects put on the respiration chest-belt, and
adjust it to their morphology – making sure the participants are as comfortable as possible wearing
the sensors.

After setting up the electrodes, the device is connected to the OpenSignals (R)evolution platform for
recording and streaming the physiological data, thus allowing the experimenter to observe a real-time
reading of the signals. The wearable sensors start recording during this procedure, but no video or
audio is recorded since the camera is not set up yet. The wearables are installed first to enable good
electrodes/skin interfacing, as the gel of the Ag/AgCl electrodes can take some minutes to correctly
hydrate the skin. To ensure accurate and low-noise data, the experimenter checks the sensors’ wires
placement, as well as the posture and position of the subject before the start of the experiment. He
adjusts and fixes the wires of the sensors using medical tape so that the presence of motion artifacts
in the data during the collection is minimized.

Next, the Logitech QuickCam Pro 9000 RGB with integrated microphone is prepared. The camera is
adjusted such that each subject is recorded in the middle of the frame with a neutral background. The
participants sit approximately 50cm from the microphone. The start of the video/audio recording is
marked on the OpenSignals (R)evolution platform using the event annotation plug-in.

Finally, once all devices are set up and the participants are installed, the experiment starts. The
experiment instructions are displayed on a screen placed in front of the participants. The whole
experiment is timed, i.e. each task and instruction are shown for a predetermined time, that is
identical for all subjects. The beginning of the experiment is indicated by a beep sound. Another
event annotation is added at the beep. This ensures the synchronization of the video, audio, and
physiological signals for each task of the experiment.

*biosignalsplux, PLUX wireless biosignals S.A. (Lisbon, Portugal)
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D.2 Task Order and Instructions

The experimental protocol of StressID was designed to have a total duration of 35 minutes while
spanning a wide variety of tasks. It includes a 3-minute guided breathing task used as a non-verbal
baseline, followed by a neutral verbal baseline, 2 emotional video clips, 7 interactive 1-minute tasks,
and a 2-minute and 30-second relaxation task. The choice and design of stressors is based on several
considerations described hereafter:

All stressors have been selected to elicit 3 different categories of responses; 1) stimulate the audiovi-
sual cortex of the participants, 2) increase the cognitive load by soliciting attention, comprehension,
mental arithmetic or multi-tasking abilities, and 3) elicit psycho-social stress leveraging on public
speaking as a stressor.

Overall, the tasks of the experiment are short – which allows the participants to perform several tasks
in a row without tiring or losing acuity by the end of the experiment.

All interactive tasks are designed to leverage time restriction as a stressor by having a strict require-
ment for a response in 1 minute – thus, after receiving instructions on the screen, the subjects see a
ticking 1-minute clock during the execution of each task.

The order of the stressors is designed to be unexpected to the participants. Therefore the experiment
alternates between subgroups of tasks (e.g. Counting3 does not come after Counting2).

The level of detail provided in the instructions as well as the duration of the instruction was also
carefully thought to maximize levels of stress in the experiment, by preventing participants from
preparing for the coming task. The exact text of instructions received by the subjects for each task is
given below:

• Breathing: "Now breathe deeply and relax."

• Baseline: "Start counting forward from 1 for 1 minute out loud".

• Video1: "Watch the video"

• Video2: "Watch the video"

• Counting1: "Start counting backward from 100 subtracting 3 for 1 minute (as fast as you
can)"

• Counting2: "Start counting backward from 1011 subtracting 7 for 1 minute (as fast as you
can)"

• Stroop: "Say out lout as many font colors as you can in one minute"

• Speaking: "Explain what are your strengths and weaknesses in 1 minute"

• Math: "Answer to the following mental arithmetic questions in 1 minute"

• Reading: "Read the following text in 1 minute (you can read silently)", followed by;
"Explain the text in details to us in 1 minute"

• Counting3: "Start counting backward from 1152 subtracting 3 for 1 minute while touching
your thumb with your other fingers"

• Relax: "Watch the relaxing video"

Each of the 11 tasks is followed by self-assessment questions. The counting forward baseline section
is not defined as a task, but is designed to keep the participants in a neutral affective state, therefore it
is not coupled with any self-assessment. Additionally, participants answer a survey question at the
end of the experiment and indicate the task they considered most stressful.

D.3 Self-assessments

Each task is annotated using answers to 4 self-assessment questions. The first 2 questions establish
the participant’s perceived stress and relaxation levels on a 0-10 scale. The following 2 questions
are based on the SAM [3], and establish the participants’ valence and arousal on a 0-10 scale. Fig. 3
shows the self-assessment questions as presented to the participants during the experiment.
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How relaxed were you?

0
Not relaxed

10
Very relaxed

1         2         3         4         5         6         7         8         9  

Please answer out loud

How stressed were you?

0
Not stressed

10
Very stressed

1         2         3         4         5         6         7         8         9  

How did you feel during the task ?

0
Unhappy

10
Happy

1         2         3         4         5         6         7         8         9  

Neutral

How involved were you in the task?

0
Calm/
Not involved

10
Excited/
Very involved

1         2         3         4         5         6         7         8         9  

Attentive/
Involved

Figure 3: Illustration of the four self-assessment questions used in StressID.

Figure 4: Most stressful tasks as designated by participants of StressID.

E Annotation Contents Analysis

E.1 Survey: Most Stressful Task

We analyze the contents of the annotations of StressID. Fig. 4 shows the distribution of the answers
to the question survey at the end of the experiment i.e. which task was perceived as most stressful for
each subject. Approximately 30% of the participants of StressID designated the task Counting2 as
most stressful, 20% designated the task of public Speaking, 15% designated the task Counting3,
while the remainder 35% chose between Stroop, Math, Reading, and Counting1. Although a
majority of participants agreed on Counting2 as the strongest stressor, this analysis highlights the
advantages of relying on multiple and diverse stressors in an experimental protocol designed for
stress identification. Perception of stress and relaxation can vary a lot from one participant to another
– and more so, the effectiveness of a stressor can vary from one subject to another; while an arithmetic
task can be a strong stressor for one individual, it can be an uneventful task for another.

E.2 Participant-specific Distributions of StressID Annotations

We analyze the distributions of the stress, relaxation, arousal, and valence self-assessments for each
participant of StressID. To have a global vision of the dataset, for each self-assessment question we
represent on a single figure all subject-specific Kernel Density Estimate (KDE) plots in Fig. 5. The
KDE plot, analogous to a histogram, represents the distribution of self-assessment data – only using a
continuous probability density curve.
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Several observations can be drawn from Fig. 5. First, for all 4 self-assessment questions, the
participant-specific distributions are rather heavy-tailed, with the exception of a few subjects. This
suggests that each participant of StressID gave a broad range of self-assessed scores across the
experiment, highlighting the ability of the StressID protocol to elicit varied responses. Second, the
perceived stress and relaxation levels of the participants across the experiment are well balanced,
suggesting the experimental protocol enabled the creation of a dataset with proportional instances
of stress and relaxation. Finally, we observe that the distribution of arousal scores is significantly
skewed towards higher ratings across the dataset, highlighting the protocol’s ability to create a high
involvement in the participants and elicit strong responses – whether stress or amusement.

Figure 5: Participant-specific KDE plots for each of the self-assessment questions.

E.3 Joint Distributions of StressID Annotations

We analyze the pair-wise joint distributions of the StressID annotations in Fig. 6. The analysis
highlights a linear relation between stress and relaxation levels. In our experimental protocol, the
participants’ perceived levels of relaxation and stress associated with each task are mutually exclusive
– globally, a subject cannot be both relaxed and stressed during a task. In addition, Fig. 6 highlights a
positive correlation between stress and arousal, and a negative correlation between stress and valence
– suggesting that across subjects and tasks, high arousal and low valence are associated with a higher
level of stress. Similarly, relaxation is positively correlated to valence, and negatively correlated
to arousal – suggesting low arousal and positive valence corresponds to higher levels of relaxation.
These last observations are consistent with psychological studies [4, 10] describing stress on the
circumplex model of affect [11], thus once again affirming the coherence of the StressID dataset.

F Stress and Emotion Identification

We train modality-specific pipelines to perform various classification tasks, e.g. discriminate between
stressed and not stressed. In all the experiments, we generate 8 random splits, using 90% of the
subjects for training, and 10% for testing for each split. The reported results are averaged over the 8
repetitions. The performances of the models are assessed using the f1-score on the test data.
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Figure 6: Joint distributions of pairs of self-assessment answers.

F.1 Pre-Processing, Feature Extraction, and Classification

Physiological Features. In the first step, the ECG, EDA, and respiration signals are pre-processed
to reduce high-frequency noise and baseline wander in the signals. Precisely, we use a 0.5 Hz
high-pass Butterworth filter of order 5 for the ECG, a 5Hz low-pass Butterworth filter of order 4 for
the EDA, and a 0.1-0.35 Hz bandpass Butterworth filter of order 2, followed by a constant detrending
for the respiration signal. We use the neurokit2 python package for all pre-processing. Then,
35 ECG features, 23 EDA, and 40 respiration features are extracted. These features include HRV
measures, frequency features, and non-linear features. An exhaustive list of the features used in our
baselines is provided in Table 2. Additionally, Fig. 7 illustrates an example of basic ECG, EDA, and
respiration features visualized using neurokit2.
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Figure 7: Example of features extracted from the ECG, EDA and respiration signals of StressID.
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Table 2: Exhaustive list of physiological features extracted.

Domain Features Total
ECG

Time
MeanHR, minHR, maxHR, stdHR, modeHR, nNN, meanNN, SDSD, CVNN,
SDNN, pNN50, pNN20, RMSSD, medianNN, q20NN, q80NN, minNN, maxNN,
triHRV

19

Frequency Total power of the signal, LF, HF, LF/HF, ULF, VLF, VHF, rLF, rHF, peakLF,
peakHF 11

Non-linear SD1, SD2, SD1SD2, ApEn, SampEn 5
EDA

Statistical
MinEDA, maxEDA, meanEDA, std, skeweness, kurtosis, median, dynamical
range, minSCR, maxSCR, meanSCR, stdSCR, minSCL, maxSCL, stdSCL,
slopeSCL

15

Time nSCRpeaks, area under SCR, mean amplitude SCR (meanAmp), maxAmp, mean
response SCR (meanResp), sumAmp, sumResp 8

Respiration

Time
MeanRR, minRR, maxRR, stdRR, nBB (breath to breath), meanBB, SDSD, SVNN,
SDNN, RMSSD, minBB, maxBB, meanTT (trhough to through), SDTT, minTT,
maxTT, meanBA (breath amplitude), SDBA, minBA, maxBA, meanBW (breath
width), SDBW, minBW, maxBW

25

Frequency Total power, LF, HF, VLF, VHF, LF/HF, rLF, rHF, peakLF, peakHF 10
Non-linear SD1, SD2, SD1SD2, ApEn, SampEn 5

Video Features. We extract Action Units (AU) and eye gaze from each video frame using the
OpenFace library [1]. The feature extraction from 587 videos is done in 3 hours 42 minutes using
two Dual CPU Intel Xeon E5-2630 v4 processors. Fig. 8 is an example of AUs extracted on a subject
of StressID.

AU12
+

AU25

Lips corners are pulled obliquely
with mouth opening

AU6 Cheeks are raised and eye opening is narrowed

Figure 8: Example of AUs extracted from a video extract of StressID.

Audio Features. In the first step, amplitude-based voice activity detection (VAD) [8] is applied
to the audio signals prior to feature extraction to eliminate non-speech segments. We first extract
handcrafted (HC) features, such as MFCCs, using the libROSA python package [9]. Fig. 9 is an
example of MFCCs extracted on a subject of StressID. Additionally, DNN-based feature extraction
is performed using a large pre-trained Wav2Vec (W2V) model [12]. Features are extracted every
20 ms and are averaged over time to obtain a single 513-component embedding per utterance. The
extraction is done using a GeForce RTX 3090 graphic card.
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Figure 9: Example of MFCCs features extracted from an audio data of StressID.

Classification. For all baselines, we have evaluated several combinations of feature selection
algorithms and classifiers and selected the best-performing ones for our baseline results.

For feature selection, we evaluated a Recursive Feature Elimination (RFE) algorithm, an L1 regu-
larisation, and Principal-Component Analysis (PCA) for dimension reduction, as well as no feature
selection. For the classification models, we have considered a large range of classical classifiers with
different hyper-parameterizations. The exhaustive list is reported in Table. 3

F.2 Additional Experiments

F.2.1 Emotion Recognition.

We report here additional experiments performed with binary labels extracted from the 4 self-
assessments. We evaluate our learning pipeline on 4 binary classification tasks; namely discriminate
between stressed (1) vs not stressed (0), relaxed (1) vs not relaxed (0), high valence (1) vs low valence
(0), and high arousal (1) vs low arousal (0).

Labels. Each continuous value of the self-assessment is split as follows; if value is less than 5 then
the label is 0, and if value is equal or greater than 5, then the label is 1. The created stress label is
balanced and composed of 48% and 52% of class 0 and 1 respectively. Similarly, the relax label is
composed of 54% and 46% of 0 and 1 respectively, and the valence label consists of 50% of each
class. On the other hand, the arousal label is severely imbalanced and consists of 71% of high arousal
(1) and 29% of low arousal (0).

Results and Discussion. The classification performances for all modalities and each label are
reported in Table 4. Our analysis confirms that the labels and the acquired data are coherent and
meaningful, and the labels are predicted from the data with f1-scores well above the random.

Despite the different number of trials for each modality, some general observations can be highlighted.
The valence appears here as the most difficult label to predict. This is especially true for audio and
video, while physiological data seems to carry more useful information to discriminate between
positive and negative valence. For the video, this can be related to the fact that a positive or negative
valence in this set-up can be expressed with similar expressions. A person can smile because they are
amused by the task or they can smile nervously. Recognizing a positive smile from a negative one is
still a challenging task to this day in the field of emotion recognition.

On the other hand, the arousal is better predicted by the audio. This can be due to the fact that when
people are more engaged in the task their tone of voice is incremented.
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Table 3: List of tested classifiers and corresponding grid search of hyper-parameters.

Model Hyper-parameters Grid search values
Support Vector Machines kernel ’linear’, ’rbf’, ’sigmoid’

C 0.1, 1.0, 10.0

gamma ’scale’, ’auto’

K-Nearest Neighbors n_neighbors 3, 5, 10, 20

weights ’uniform’, ’distance’

algorithm ’auto’, ’ball_tree’,’kd_tree’, ’brute’

Random Forests n_estimators 100, 150, 200

criterion ’gini’,’entropy’

max_depth 3, 5, 7

min_samples_split 2, 4, 6

min_samples_leaf 1, 2, 3

max_features ’auto’, ’sqrt’, ’log2’

class_weight None, ’balanced’, ’balanced_subsample’

Multi Layer Perceptron activation ’logistic’, ’tanh’, ’relu’

trained using a cross-entropy loss alpha 0.0001, 0.001, 0.01

in combination with an Adam [7] solver ’lbfgs’, ’adam’

optimizer and number of hidden learning_rate ’constant’, ’invscaling’, ’adaptive

layers in [2,3,4], layer width shuffle True, False

in [64, 128, 256] momentum 0.7, 0.8, 0.9

early_stopping True, False

Logistic Regression penalty l1, l2

C 0.1, 1, 10

solver ’liblinear’, ’saga

Gradient Boosting Classifier loss ’deviance’, ’exponential

n_estimators 100, 150, 200

learning_rate 0.1, 0.5, 1.0

max_depth 3, 5, 7

min_samples_split 2, 4, 6

max_features ’sqrt’, ’log2

LGBM boosting_type ’gbdt’, ’dart

importance_type ’split’, ’gain’

num_leaves 20, 30, 40

max_depth 5, 10, -1

learning_rate 0.1, 0.01

n_estimators 100, 200

objective ’binary’, ’multiclass’

metric ’binary_logloss’, ’multi_logloss’

colsample_bytree 0.8, 1.0

reg_lambda 0.5, 1.

reg_alpha 0.0, 0.5

Ridge Classifier alpha 0.1, 1.0, 10.0

Decision Tree Classifier criterion ’gini’, ’entropy’

max_depth None, 3, 5, 7

min_samples_split 2, 4, 6

min_samples_leaf 1, 2, 3

max_features ’auto’, ’sqrt’, ’log2’

For the tasks of identifying stress and relaxation, the physiological signals appear as the most
meaningful modality. Nonetheless, the results highlight good performances for all modalities,
highlighting the strong correlations between the recorded data and the labels.

F.2.2 Multimodal Learning on Other Multimodal Combinations

To further highlight the advantages of multimodal learning, we have evaluated multimodal baselines
on all the possible modality combinations of the available data, i.e. physiological/video only,
video/audio only, and physiological/audio only. Each baseline that combines the features extracted
from different modalities is evaluated on all the data available in the subset of tasks featuring the said
modalities. When the subset presents a strong imbalance in the labels, we use Minority Over-sampling

14



Table 4: Baseline f1-scores for different classification tasks. Each unimodal baseline is trained and
tested on all available tasks of the corresponding modality (#tasks).

Data subset (#tasks) Binary stress Binary relax Binary arousal Binary valence
Physiological (711) 0.73 ± 0.04 0.67 ± 0.06 0.66 ± 0.06 0.64 ± 0.07

Video (587) 0.62 ± 0.04 0.62 ± 0.06 0.67 ± 0.10 0.54 ± 0.07
Audio-HC (385) 0.67 ± 0.04 0.62 ± 0.1 0.79 ± 0.09 0.55 ± 0.09

Table 5: Performances of multimodal baselines for the classification of stress, compared to unimodal
models.

2-class 3-class
Modalities (subset size) F1-score Accuracy F1-score Accuracy

Physiological (711) 0.73 ± 0.02 0.72 ± 0.03 0.55 ± 0.04 0.56 ± 0.03
Video (587) 0.70 ± 0.03 0.70 ± 0.03 0.55 ± 0.03 0.55 ± 0.03
Audio (385) 0.70 ± 0.02 0.66 ± 0.03 0.56 ± 0.04 0.52 ± 0.04

Physiological + Video (587) 0.72 ± 0.04 0.72 ± 0.04 0.62 ± 0.05 0.52 ± 0.07
Video + Audio (370) 0.76 ± 0.05 0.68 ± 0.05 0.52 ± 0.06 0.45 ± 0.05

Physiological + Audio (385) 0.68 ± 0.08 0.62 ± 0.07 0.50 ± 0.07 0.41 ± 0.07
All modalities (370) 0.72 ± 0.05 0.65 ± 0.05 0.63 ± 0.05 0.58 ± 0.07

Techniques (SMOTE) to balance the training set in each of the 10 repetitions, and leave the test sets
untouched.

The multimodal baselines are compared with the best-performing unimodal baselines, trained on all
the available data of each modality. The results for all multimodal baselines for the 2-class and 3-class
classification are reported in Table 5. As observed in the results of Section 4, multimodal models
using decision-level fusion show considerable improvement over the performances of unimodal
models. We, therefore, evaluate models based on SVMs merged with different decision rules (i.e.
sum, product, average, or maximum rule) and report the best-performing ones here.

Despite the different subset sizes for each baseline, some conclusions can be drawn. First, the
performances of unimodal baselines highlight that the physiological modality carries more informa-
tion for the classification of 2-class stress. However, all 3 unimodal baselines achieve comparable
results for the classification of 3-class stress. It can be noted that the baseline on the physiological
modality shows slightly better performances in terms of accuracy, suggesting physiological data is
more susceptible to carrying information allowing to discriminate between different emotional states.

Second, the multimodal baselines show that combining multiple modalities by merging the results
of unimodal models using late voting on each modality (decision fusion), considerably improves
classification performances. For 2-class prediction, the best performance is shown by the combination
of video and audio features. However, for 3-class classification the best performance is achieved
when combining all available modalities, highlighting the predictive potential of combining multiple
complementary sources of data, and showing once more the importance of physiological data in the
discrimination between a relaxed state and acute stress.

F.2.3 Investigating the Effect of Gender Imbalance

A balanced dataset is crucial for performing bias-free analyses and minimizing the risk of bias in
algorithm development. Potential imbalances in gender, race, age, or background of the participants
can limit the development of fair and equitable applications, and researchers need to be aware of this
aspect. To sensitize users to this issue, we have evaluated the predictive potential of our dataset on a
subset of StressID presenting a balanced ratio of female and male subjects – using the previously
introduced unimodal and multimodal baseline models. To create this subset, the recordings from the
18 female participants are kept untouched, and only 18 male participants are randomly selected, thus
resulting in a subset composed of 36 subjects. The classification performances for unimodal and
multimodal baselines for the 2-class classification are reported in Table 6. The results are averaged
over 5 random balanced subsets built this way. All baselines are performed on tasks available for all
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Table 6: Performances of unimodal and multimodal baselines for the 2-class classification of stress,
using a gender balanced subset. The high variability in the results is explained by the use of different
random subsets of the data across repetitions.

Modalities F1-score Accuracy
Physiological 0.69 ± 0.1 0.62 ± 0.1

Video 0.73 ± 0.07 0.65 ± 0.08
Audio 0.69 ± 0.07 0.64 ± 0.07

All modalities (370) 0.73 ± 0.07 0.64 ± 0.07

3 modalities. When the subset presents an imbalance in the labels, we use SMOTE to balance the
training set, and leave the test sets untouched.

Two important conclusions can be drawn from the results observed in Table 6. First, several baselines
built on balanced subsets outperform (or compare to) the baselines using all available data. This
suggests more balanced datasets can improve the performances of subsequent models, and thus
highlights potential bias induced by imbalanced representation in data. This is to be expected, as
training on well-balanced data decreases the risk for a model to overfit – which in the case of gender
imbalance can be translated as learning on male subjects mainly during the training phase and
performing poorly during the testing phase on female subjects, less seen during training. With this
experiment, we aim to increase the awareness of users to the effect of gender imbalance in particular,
and we invite them to account for this possibility in their analyses.

Second, these results illustrate the possibility of developing algorithms achieving good classification
performances on restricted parts of StressID. Indeed, our dataset offers the possibility to focus on
particular subsets of the data while still ensuring good prediction scores, thanks to its large total
population. For instance, the gender-balanced subset of our dataset represents 36 participants, while
similar multimodal datasets collect data from less than 30 participants in total, without eliminating
the limitation of gender imbalance – thus highlighting once more the advantages of StressID.

We strongly encourage users of StressID to anticipate possible consequences by taking the appro-
priate steps to build equitable systems before their use in real-life applications – this experiment
provides a good starting point and example of how to proceed.

References
[1] Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. Openface 2.0:

Facial behavior analysis toolkit. In 2018 13th IEEE international conference on automatic face
& gesture recognition (FG 2018), pages 59–66. IEEE, 2018.

[2] Jack Bandy and Nicholas Vincent. Nutrition label template for
dataset documentation. https://www.overleaf.com/latex/templates/

nutrition-label-template-for-dataset-documentation/gxzpbfmncyfp, 2021.

[3] Margaret M Bradley and Peter J Lang. Measuring emotion: the self-assessment manikin and the
semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1):49–59,
1994.

[4] Sven-Åke Christianson. Emotional stress and eyewitness memory: a critical review. Psycholog-
ical bulletin, 112(2):284, 1992.

[5] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna
Wallach, Hal Daumé III au2, and Kate Crawford. Datasheets for datasets. https://arxiv.
org/abs/1803.09010, 2021.

[6] Open Source Initiative. The 3-Clause BSD License. https://opensource.org/license/
bsd-3-clause/, 2023.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

16

https://www.overleaf.com/latex/templates/nutrition-label-template-for-dataset-documentation/gxzpbfmncyfp
https://www.overleaf.com/latex/templates/nutrition-label-template-for-dataset-documentation/gxzpbfmncyfp
https://arxiv.org/abs/1803.09010
https://arxiv.org/abs/1803.09010
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/bsd-3-clause/


[8] Tomi Kinnunen and Haizhou Li. An overview of text-independent speaker recognition: From
features to supervectors. Speech communication, 52(1):12–40, 2010.

[9] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg,
and Oriol Nieto. librosa: Audio and music signal analysis in python. In Proceedings of the 14th
python in science conference, volume 8, 2015.

[10] Maria D McManus, Jason T Siegel, and Jeanne Nakamura. The predictive power of low-arousal
positive affect. Motivation and Emotion, 43:130–144, 2019.

[11] James A Russell. A circumplex model of affect. Journal of personality and social psychology,
39(6):1161, 1980.

[12] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised
pre-training for speech recognition, 2019.

17


